图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2018025304
pages 217-240

CHARACTERISTICS OF FREE SPRAY DEVELOPMENT, MIXTURE FORMATION, AND COMBUSTION UNDER HIGH-PRESSURE SPLIT INJECTION

Kang Yang
Jiangsu University
Hirotaka Yamakawa
Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
Keiya Nishida
Department of Mechanical System Engineering, University of Hiroshima, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
Youichi Ogata
Department of Mechanical System Engineering, University of Hiroshima, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

ABSTRACT

The objective of this study is to gain an enhanced understanding of the characteristics of free spray development, mixture formation, and combustion under high-pressure split injection. The fuel was injected into a constant volume vessel by a single-hole nozzle with a hole diameter of 0.111 mm. The injection process comprised a pre-injection followed by the main injection. The main injection was carried out either as (i) a single main injection, with injection pressure of either 100 MPa or 160 MPa, or (ii) a split main injection with injection pressure of 160 MPa defined by the mass fraction ratio of 75:25. A high-speed camera was used to observe the spray development under non-evaporation conditions. The tracer LAS technique was used to observe the spray mixture formation process. The diesel spray combustion and soot formation processes were studied using a high-speed video camera and examined by two-color pyrometry. The experimental results revealed that split injection can make the vapor phase more homogeneous. Split injection could enhance the combustion and decrease the soot emissions. The soot evolution process was divided into three parts under the single main injection, but into six parts during the split main injection. The effect of the split injection on the soot evolution process ended at the same time when the injection duration is same.


Articles with similar content:

THE EFFECT OF FLASH BOILING ON THE ATOMIZATION PERFORMANCE OF GASOLINE DIRECT INJECTION MULTISTREAM INJECTORS
Atomization and Sprays, Vol.24, 2014, issue 6
Jerome Helie, Graham Wigley, Mehdi Mojtabi
Effects of Nozzle Hole Number, Spray Included Angle and Compression Ratio on Combustion Characteristics in a Heavy-Duty Engine
4th Thermal and Fluids Engineering Conference, Vol.3, 2019, issue
Sungwook Park, Minhoo Choi
Effects of Fuel Viscosity and Ambient Temperature on Spray Characteristics from Multi-Hole Nozzle Injectors
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
C. B. Warrick, J. M. Kozma, T. F. Su, Patrick V. Farrell
SUBSONIC EFFERVESCENT ATOMIZATION: A THEORETICAL APPROACH
Atomization and Sprays, Vol.14, 2004, issue 6
Eran Sher, Tali Bar-Kohany
GROUP COMBUSTION BEHAVIOR OF DROPLETS IN A PREMIXED-SPRAY FLAME
Atomization and Sprays, Vol.7, 1997, issue 2
Yong Dae Cho, Kazuyoshi Nakabe, Yukio Mizutani, Shohji Tsushima, Masashi Katsuki, Fumiteru Akamatsu