图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2011003127
pages 237-248

NUMERICAL SIMULATION OF THE CAVITATING FLOW IN AN ELLIPTICAL NOZZLE

Jung Goo Hong
Department of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro Buk-gu, Daegu, Republic of Korea
Kun Woo Ku
Department of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro Buk-gu, Daegu, Republic of Korea
Choong-Won Lee
Department of Mechanical Engineering, Kyungpook National University,1370 Sankyuk-dong Buk-gu, Daegu, Republic of Korea

ABSTRACT

Atomization is affected by the internal flow of liquid in the nozzle as well as the interaction between liquid and the surrounding air at the spray downstream. Cavitation which is generated in the nozzle is known for having a strong influence on atomization. Recent research shows that cavitation in the circular nozzle had a cylindrical shape that is symmetrical to the nozzle axial However the cavitation shape of elliptical nozzles looked like a horseshoe in that the cavitation length for the major axis plane is longer than that of the minor axis plane. The purpose of this study is to numerically investigate the internal nozzle flow and cavitation characteristics in a circular nozzle and an elliptical nozzle. The computational fluid dynamics (CFD) code FLUENT 6.2 was used to perform the numerical simulation of the cavitating flow in the nozzles. A comparison between the cavitation shape of the numerical results and those of the experimental results was made to validate a numerical solution. As a consequence of this study, in the case of the elliptical nozzle, the static pressure of the working fluid at the major axis plane was decreased near the vapor pressure along the orifice wall at a longer distance when compared with the minor axis plane. Also, the radial velocity distribution was different between the major axis plane and the minor axis plane when the working fluid was flowing into the orifice inlet.


Articles with similar content:

Characteristics of the Internal Flow in a Diesel Injection Nozzle
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
Keiya Nishida, Hiroyuki Hiroyasu, J. H. Kim
DISINTEGRATION OF LIQUID JETS FROM A COAXIAL DUAL NOZZLE, PART I: OBSERVATION OF BREAKUP PHENOMENA
Atomization and Sprays, Vol.7, 1997, issue 5
Soo-Young No, Masataka Arai, Kenji Amagai
EFFECT OF INTERNAL FLOW STRUCTURE IN CIRCULAR AND ELLIPTICAL NOZZLES ON SPRAY CHARACTERISTICS
Atomization and Sprays, Vol.21, 2011, issue 8
Choong-Won Lee, Kun Woo Ku, Jung Goo Hong
NUMERICAL INVESTIGATION ON EFFECTS OF ELLIPTICAL DIESEL NOZZLE ON PRIMARY SPRAY CHARACTERISTICS BY LARGE EDDY SIMULATION (LES)
Atomization and Sprays, Vol.28, 2018, issue 8
Bifeng Yin, Bin Xu, Shenghao Yu, Ze Ye, Huaping Xu, Hekun Jia, Weixin Deng
Characterization of Cavitation Flow in a Simple Hole Nozzle
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
Keiya Nishida, Steven L. Ceccio, Hiroyuki Hiroyasu, Dennis N. Assanis, N. Tamaki