图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2014010719
pages 977-997

A MODEL OF AN ATOMIZING DROP

Oleksandr G. Girin
Odesa National Maritime University, Mechnikova Str. 34, Odesa, 65029, Ukraine

ABSTRACT

This paper presents a two-level mathematical model that describes the aerodynamics of an evaporating mist around an atomizing spherical drop in a uniform air stream at large Weber numbers. The lower-level model describes the mechanics of daughter droplet formation at the parent drop surface. The model utilizes the concept of quasi-continuous, high-frequency periodic dispersion from the unstable part of the drop surface caused by the hydrodynamic instability of the gradient flow in conjugated boundary layers. The upper-level model reflects spatial aerodynamics of the evaporating spray being generated by atomizing drop. In this model, daughter droplets are assumed to behave as a multivelocity continuum and the ballistics of an axisymmetric evaporating mist are rendered as equations in dynamic four-dimensional space. The model rests on the following assumptions: the air-velocity field around a spherical drop is potential; the daughter droplets and their associated vapor do not influence the air flowfield; the initial velocity of newborn droplet is equal to that of the fastest unstable wave on the parent drop surface that produces it; the Ranz-Marshall model is appropriate for describing droplet evaporation. The variance in time of the spatial distributions of the breakaway droplets' mass, number density, and of the vapor density is processed and analyzed in video format. The detailed fields of the droplets' mean diameters are also obtained. Large vapor concentrations and a decreasing local gas-phase temperature are revealed.


Articles with similar content:

MODEL OF THE FUEL JET PRIMARY ATOMIZATION AND AERODYNAMICS OF SPRAY FORMATION AT HIGH-PRESSURE INJECTION IN A DIESEL ENGINE
Atomization and Sprays, Vol.28, 2018, issue 3
Oleksandr G. Girin
2.1 Direct Contact Condensation of Steam on a High Speed Spray Jet of Subcooled Water
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1980, issue
H. Kitada, Akira Nishiguchi, K. Ohba
DIESEL SPRAY ATOMIZATION MODEL CONSIDERING NOZZLE EXIT TURBULENCE CONDITIONS
Atomization and Sprays, Vol.8, 1998, issue 4
Kang Y. Huh, Eunju Lee, Jaye Koo
NUMERICAL SIMULATION OF DROPLET FORMATION FROM COAXIAL TWIN-FLUID ATOMIZER
Atomization and Sprays, Vol.12, 2002, issue 1-3
Takao Inamura, Masatoshi Daikoku
A STUDY ON MARANGONI CONDENSATION (MEASUREMENT AND OBSERVATION FOR WATER AND ETHANOL VAPOR MIXTURE)
International Heat Transfer Conference 11, Vol.17, 1998, issue
Tatsuya Kenmotsu, Shunya Yokoyama, Yoshio Utaka