图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2014010843
pages 999-1016

APPROXIMATE RELATIONS OF THE EVAPORATING DROPLET BALLISTICS

Oleksandr G. Girin
Odesa National Maritime University, Mechnikova Str. 34, Odesa, 65029, Ukraine

ABSTRACT

The problem of evaporating droplet ballistics in a uniform gas stream is solved analytically. The main regularities of the process are obtained as the approximate solution of the governing differential equations of the droplet motion and evaporation in a practically important range of the determinant parameters. The equations reflect convective evaporation enhancement and transiency of droplet diameter and relative velocity, which have an influence on both droplet motion and evaporation. Formulas for droplet lifetime and path length, the moving droplet evaporation law, and the law of evaporating droplet motion are obtained in an implicit form. Found dependences provide the possibility to analyze theoretically the droplet behavior in a stream. The found relationships show that the convective enhancement of the evaporation reduces the droplet path length up to 3 times, and life-time up to 9 times. Two main regimes of the droplet evaporation ballistics are revealed: the dynamic evaporation and dynamic acceleration, which occur depending on the ballistic criterion value. The power-mode evaporation law is realized only within the dynamic evaporation regime. Calculations testify to the strong influence of the evaporation on a droplet motion. An approximate expression for the vapor mass production history along droplet trajectory is obtained. The obtained relationships have an acceptable error in a wide range of the found criteria. They allow significant simplification of the quantitative description of evaporation ballistics in sprays and are applicable to various engineering problems. The results are limited to the cases when the evaporation rate may be expressed by some effective evaporation constant value.


Articles with similar content:

HEAT AND MASS TRANSFER DURING EVAPORATION OF SOLUTION DISPERSED IN HOT GAS FLOW
International Heat Transfer Conference 6, Vol.1, 1978, issue
D.I. Lamden, I.L. Mostinsky
UNSTEADY AND QUASI-STEADY VAPORIZATION OF SPHERICAL DROPLET CLOUDS
Atomization and Sprays, Vol.6, 1996, issue 2
Muh Hsiung Yang, Martin Sichel
MONO- AND MULTI-COMPONENT DROPLET COOLING/HEATING AND EVAPORATION: COMPARATIVE ANALYSIS OF NUMERICAL MODELS
Atomization and Sprays, Vol.21, 2011, issue 11
Guillaume Castanet, Fabrice Lemoine, I. G. Gusev, A. E. Elwardany, Sergei S. Sazhin
MODELING OF SPRAY IMPACT ON SOLID SURFACES
Atomization and Sprays, Vol.10, 2000, issue 3-5
Ilia V. Roisman, Cameron Tropea
EQUILIBRIUM EVAPORATION SPRAY MODELING FOR APPLICATION IN COOL FLAMES
International Journal of Energy for a Clean Environment, Vol.6, 2005, issue 4
M. A. Founti, D. I. Kolaitis