图书馆订阅: Guest
国际清洁环境能源期刊

每年出版 8 

ISSN 打印: 2150-3621

ISSN 在线: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

PERSPECTIVES FOR DEVELOPING AND USING THE TORREFACTION TECHNOLOGY IN UKRAINE

卷 20, 册 2, 2019, pp. 113-134
DOI: 10.1615/InterJEnerCleanEnv.2019026643
Get accessGet access

摘要

Ukraine refers to countries that only partially provide themselves with traditional types of energy resources, and it is forced to import about 65% of fossil fuels. This article shows the possibility of increasing the biomass energy using through introduction of torrefaction technology as a relatively new process that allows converting raw material to highly efficient fuels with properties close to fossil fuels increasing amount of processing of raw materials geography of its delivery, reducing the cost of transportation, storage what will be enable to save traditional fuel and energy resources, diversify sources of energy supplies, strengthen energy independence of the state and improve the environment. There are a number of applications for torrefaction products, the most promising of which are: combustion in pellet boilers, cofiring with coal, gasification of raw biomass for fuel production, and the production of composite wood-based materials. Estimation of the efficiency of considered technologies is carried out.

参考文献
  1. Alakangas, E. and Paju, P., (2002) , Wood Pellets in Finland—Technology, Economy and Market, Organizations for the Promotion of Energy Technologies, Jyväskylä, No. OPET Report 5.

  2. Beets, M., (2017) , A Torrefied Wood Pellet Supply Chain: A Detailed Cost Analysis of the Competitiveness of Torrefied Wood Pellets Compared to White Wood Pellets, MSc, Sustainable Development, p. 44.

  3. Bergman, P.C.A., (2005) , Combined Torrefaction and Pelletisation. The TOP process, Energy Research Centre of the Netherlands, Petten, The Netherlands, Rep. ECN-C–05-073.

  4. Bergman, P.C.A., Boersma, A.R., Zwart, R.W.H., and Kiel, J.H.A., (2005a) , Torrefaction for Biomass Cofiring in Existing Coal-Fired Power Stations, Energy Research Centre of the Netherlands, Petten, The Netherlands, Rep. ECN-C–05-013.

  5. Bergman, P.C.A. and Kiel, J.H.A., (2005) , Torrefaction for Biomass Upgrading, Energy Research Centre of the Netherlands, Paris, France, Rep. No. ECN-RX–05-180.

  6. Bergman, P.C.A., Prins, M.J., Boersma, A.R., Ptasinki, K.J., Kiel, J.H.A., and Janssen, F.J.J.G., (2005b) , Torrefied Biomass for Entrained-Flow Gasification of Biomass, Energy Research Centre of the Netherlands, Petten, The Netherlands, Rep. No. ECN-C–05-067.

  7. Blum, Y.B., Tsigankov, S.P., Grigoryuk, I.P., Dubrovin, V.O., Kaletnik, G.M., and Rakhmetov, D.B., (2014) , System of Bioresources in Biofuel Technology Using, Sci. Her. Natl. Univ. Bioresour. Nat. Manag. Ukr. Engineering and Power Engineering of Agroindustrial Complex, no. 198(3), pp. 9–11.

  8. Boskovic, A., (2015) , Biomass Torrefaction—Grindability and Dust Explosibility, MSc, p. 133.

  9. Daly, J.C.K., (2014) , Conflict Forces Coal-Rich Ukraine to Import More Coal to Ease Shortfalls, Eurasia Dly. Monit., 11(194).

  10. Dayton, D., (2002) , Review of the Literature on Catalytic Biomass Tar Destruction: Milestone Completion, Rep. No. NREL/TP-510-32815, 15002876. DOI: 10.2172/15002876

  11. Di Blasi, C. and Lanzetta, M., (1997) , Intrinsic Kinetics of Isothermal Xylan Degradation in Inert Atmosphere, J. Anal. Appl. Pyrolysis, 40–41, pp. 287–303. DOI: 10.1016/s0165-2370(97)00028-4

  12. Dunaevskaya, N.I., Zasiadko, Y.I., Zasiadko, P.Y., and Shchudlo, T.S., (2017) , Mathematical Model of the Processes of Biomass and Coal Cofiring in TPP Boilers, Elektron. Model., 39(3), pp. 89–104.

  13. Eseyin, A.E., Steele, P.H., and Prittman, J., (2015) , Current Trends in the Production and Applications of Torrefied Wood/Biomass—A Review, Bioresources, 10(4), pp. 8812–8858.

  14. Food and Agriculture Organization of the United Nations, Ed., (2006) , World Reference Base for Soil Resources, 2006: A Framework for International Classifi cation, Correlation, and Communication, World Soil Resources Reports, Rome: Food and Agriculture Organization of the United Nations.

  15. Gårdbro, G., (2014) , Techno-Economic Modeling of the Supply Chain for Torrefied Biomass, MSc, p. 41, accessed June 10, 2014, from http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89698.

  16. Geletukha, G.G., Kramar, V., Epik, A.V., Antoschuk, T., and Titkov, V., (2016) , Comprehensive Analysis of the Ukrainian Biomass Pellets Market (definition of growth points). A Manual, Kiev, Ukraine: Bioenergy Association of Ukraine.

  17. Geletukha, G.G. and Zhelezna, T.A., (2017) , Current State and Prospects of Bioenergy in Ukraine, Ind. Heat Eng., 39(2), pp. 60–64.

  18. Ionel, I., Popescu, F., Lontis, N., Trif-Tordai, G., and Russ, W., (2009), Co-combustion of Fossil Fuel with Biofuel in Small Cogeneration Systems, between Necessity and Achievements, in Proc. 11th WSEAS Int. Conf. Sustain. Sci. Eng., presented at the 11th WSEAS International Conference on Sustainability in Science Engineering.

  19. Jakubiak, M. and Kordylewski, W., (2010) , Biomass Torrefaction, Arch. Spalania, 10(1–2), pp. 11–25.

  20. Junsatien, W., Soponpongpipat, N., and Phetsong, S., (2013) , Torrefaction Reactors, J. Sci. Technol. Mahasarakham Univ., 32(1), pp. 84–91.

  21. Kaltschmitt, M., Hartmann, H., and Hofbauer, H., Eds., (2009) , Energie aus Biomasse: Grundlagen, Techniken und Verfahren, Heidelberg/New York: Springer.

  22. Kleinschmidt, C.P., (2011) , Overview of International Developments on Torrefaction, presented at the Central European Biomass Conference, Grazz, Austria.

  23. Koppejan, J., Sokhansanj, S., Melin, S., and Madrali, S., (2012) , Status Overview of Torrefaction Technologies, Procede Biomass BV, Enschede, The Netherlands, Final report No. 32.

  24. Kosov, V., Kosov, V., Sinelschikov, V., and Zaichenko, V., (2014), High-Calorific Gas Mixtures Produced from Biomass, in Int. Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), A.Y. Oral, Z.B. Bahsi, and M. Ozer, Eds., Cham, Switzerland: Springer International Publishing, pp. 377–383. DOI: 10.1007/978-3-319-05521-3_48

  25. Kryshtopa, S., Panchuk, M., Dolishnii, B., Kryshtopa, L., Hnyp, M., and Skalatska, O., (2018), Research into Emissions of Nitrogen Oxides when Converting the Diesel Engines to Alternative Fuels, East.- Eur. J. Enterp. Technol., 1(10), pp. 16–22. DOI: 10.15587/1729-4061.2018.124045

  26. Kryshtopa, S., Panchuk, M., Kozak, F., Dolishnii, B., Mykytii, I., and Skalatska, O., (2018), Fuel Economy Raising of Alternative Fuel Converted Diesel Engines, East.-Eur. J. Enterp. Technol., 4(8), pp. 6–13. DOI: 10.15587/1729-4061.2018.139358

  27. Kuzmina, J., Sytchev, G., and Zaychenko, V., (2016) , Torrefaction. Prospects and Application, Chem. Eng. Trans., pp. 265–270. DOI: 10.3303/cet1650045

  28. Li, J., Brzdekiewicz, A., Yang, W., and Blasiak, W., (2012), Cofiring Based on Biomass Torrefaction in a Pulverized Coal Boiler with Aim of 100% Fuel Switching, Appl. Energy, 99, pp. 344–354. DOI: 10.1016/j.apenergy.2012.05.046

  29. Li, J., Zhang, X., Pawlak-Kruczek, H., Yang, W., Kruczek, P., and Blasiak, W., (2014), Process Simulation of Cofiring Torrefied Biomass in a 220 MW Coal-Fired Power Plant, Energy Convers. Manage., 84, pp. 503–511. DOI: 10.1016/j.enconman.2014.04.075

  30. Makarov, A.A., Pushkin, S.A., Grachev, A.N., and Bashkirov, A.N., (2013), Investigation of Fuel Properties of Solid Products of Thermal Decomposition in the Temperature Range 200–300°С, Bull. Technol. Univ., (19), pp. 133–134.

  31. Medic, D., (2012), Investigation of Torrefaction Process Parameters and Characterization of Torrefied Biomass, PhD, p. 139.

  32. Mikhailov, A.S., Evdokimov, O.A., Guryanov, A.I., and Spesivtseva, N.S., (2017), Influence of the Fractional Composition of Composite Fuel Granules on Their Characteristics as an Energy Source, Int. J. Energy Clean Environ., 18(3), pp. 231–242. DOI: 10.1615/interjenercleanenv.2017020710

  33. Müller-Hagedorn, M., Bockhorn, H., Krebs, L., and Müller, U., (2003) , A Comparative Kinetic Study on the Pyrolysis of Three Different Wood Species, J. Anal. Appl. Pyrolysis, 68–69, pp. 231–249. DOI: 10.1016/s0165-2370(03)00065-2

  34. Nhuchhen, D., Basu, P., and Acharya, B., (2014) , A Comprehensive Review on Biomass Torrefaction, Int. J. Renew. Energy Biofuels, pp. 1–56. DOI: 10.5171/2014.506376

  35. Nunes, L.J.R., Matias, J.C.O., and Catalão, J.P.S., (2014) , A Review on Torrefied Biomass Pellets as a Sustainable Alternative to Coal in Power Generation, Renew. Sustain. Energy Rev., 40, pp. 153–160. DOI: 10.1016/j.rser.2014.07.181

  36. Ovsianko, A.D., (2015) , Economic Analysis of Export—Oriented Production of Wood Biofuel in Russia. Market Perspectives of Torexified Biomass.

  37. Ovsianko, A.D. and Yudkevich, Y., (2015) , Torrefaction: Myths, Importance, Use, and Production, LesPromInfom, 4, pp. 130–133.

  38. Panchuk, M., Kryshtopa, S., Shlapak, L., Kryshtopa, L., Yarovyi, V., and Sładkowski, A.V., (2017), Main Trend of Biofuels Production in Ukraine, Transp. Probl., 12(4), pp. 95–103. DOI: 10.20858/ tp.2017.12.4.2

  39. Pestaño, L.D.B. and Jose, W.I., (2016), Production of Solid Fuel by Torrefaction Using Coconut Leaves as Renewable Biomass, Int. J. Renew. Energy Dev., 5(3), p. 187. DOI: 10.14710/ijred.5.3.187-197

  40. Prins, M.J., Ptasinski, K.J., and Janssen, F.J.J.G., (2006) , More Efficient Biomass Gasification via Torrefaction, Energy, 31(15), pp. 3458–3470. DOI: 10.1016/j.energy.2006.03.008

  41. Ptasinski, K.J., (2008) , Evaluation of Thermodynamic Efficiency of Biowaste Gasification, in WIT Transactions on Ecology and the Environment, pp. 309–318. DOI: 10.2495/wm080331

  42. Rollinson, A.N. and Williams, O., (2016) , Experiments on Torrefied Wood Pellet: Study by Gasification and Characterization for Waste Biomass to Energy Applications, R. Soc. Open Sci., 3(5), p. 150578. DOI: 10.1098/rsos.150578

  43. Schorr, C., Muinonen, M., and Nurminen, F., (2012) , Torrefaction of Biomass, Miktech Ltd., Mikkeli, Finland, Research No. 6.3.2012.

  44. Sipila, E., (2013) , Biomass as a Feedstock for Gasification, AEL Biomass Gasif. Semin., presented at the AEL Biomass Gasification Seminar, Tampere, Finland.

  45. State Land Policy in Ukraine: State and Development Strategy, (2009) Natl. Secur. Def. Mag., 3, pp. 2–31.

  46. Sun, Y.J., Jiang, J.C., Zhao, S.H., Hu, Y.M., and Zheng, Z.F., (2011) , Review of Torrefaction Reactor Technology, Adv. Mater. Res., 347–353, pp. 1149–1155. DOI: 10.4028/www.scientifi c.net/amr.347- 353.1149

  47. Trif-Tordai, G. and Ionel, I., (2011) , Waste Biomass as Alternative Bio-Fuel—Co-Firing versus Direct Combustion, in Alternative Fuel, M. Manzanera, Ed., InTech. DOI: 10.5772/25030

  48. Tumuluru, J.S., Sokhansanj, S., Wright, C.T., and Boardman, R.D., (2010) , Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development, Rep. No. INL/EXT-10-19569, 1042391.

  49. Van Loo, S. and Koppejan, J., Eds., (2003) , Handbook of Biomass Combustion and Co-Firing: Prepared by Task 32 of the Implementing Agreement on Bioenergy, Enschede, the Netherlands: Twente Univ. Press.

  50. Wilén, C., (2014) , Wood Torrefaction–Market Prospects and Integration with the Forest and Energy Industry, Espoo: VTT, accessed May 19, 2018, from http://www.vtt.fi /inf/pdf/technology/2014/T163.pdf.

  51. Zaichenko, V.M., Kosov, V.V., Kosov, V.F., and Sinelschikov, V.A., (2012), Torrefaction as the Method for Consumer Characteristics of Granulated Biomass Fuel Improvement, Energy Technol. Resour. Sav., 5, pp. 37–41.

  52. Zakri, B., Saari, J., Sermyagina, E., and Vakkilainen, E., (2013) , Integration of Torrefaction with Steam Power Plant, Lappeenranta, Finland: Lappeenranta University of Technology, Department of Energy Technology.

对本文的引用
  1. Panchuk Myroslav, Kryshtopa Sviatoslav, Sładkowski Aleksander, Panchuk Andrii, Environmental Aspects of the Production and Use of Biofuels in Transport, in Ecology in Transport: Problems and Solutions, 124, 2020. Crossref

  2. Kryshtopa Sviatoslav, Melnyk Vasyl, Dolishnii Bogdan, Korohodskyi Volodymyr, Prunko Igor, Kryshtopa Liudmyla, Zakhara Ihor, Voitsekhivska Tetiana, Improvement of the model of forecasting heavy metals of exhaust gases of motor vehicles in the soil, Eastern-European Journal of Enterprise Technologies, 4, 10 (100), 2019. Crossref

  3. Bazaluk Oleg, Sai Kateryna, Lozynskyi Vasyl, Petlovanyi Mykhailo, Saik Pavlo, Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea, Energies, 14, 5, 2021. Crossref

  4. Kryshtopa Sviatoslav, Górski Krzysztof, Longwic Rafał, Smigins Ruslans, Kryshtopa Liudmyla, Increasing Parameters of Diesel Engines by Their Transformation for Methanol Conversion Products, Energies, 14, 6, 2021. Crossref

  5. Panchuk Myroslav, Panchuk Andrii, Mandryk Ilona, Problems of CO2 Emissions in Ukraine and Ways to Overcome Them, 2021 Third International Sustainability and Resilience Conference: Climate Change, 2021. Crossref

  6. Kryshtopa S, Kryshtopa L, Panchuk M, Smigins R, Dolishnii B., Composition and energy value research of pyrolise gases, IOP Conference Series: Earth and Environmental Science, 628, 1, 2021. Crossref

  7. Panchuk Andrii, Panchuk Myroslav, Kryshtopa Sviatoslav, New Technology for Synthesis Gas Production from Energy Willow as a Sustainable Solution for the Sustainable Development of Ukrainian Energy Industry, 2022 International Conference on Decision Aid Sciences and Applications (DASA), 2022. Crossref

  8. Kumar Pritam, Nandi Barun Kumar, Combustion Characteristics of Coal, Petroleum Coke, Biomass, and Their Ternary Blends, Journal of Energy Resources Technology, 144, 1, 2022. Crossref

  9. Panchuk Myroslav, Kryshtopa Sviatoslav, Panchuk Andrii, Innovative Technologies for the Creation of a New Sustainable, Environmentally Neutral Energy Production in Ukraine, 2020 International Conference on Decision Aid Sciences and Application (DASA), 2020. Crossref

  10. Kryshtopa Sviatoslav, Kryshtopa Liudmyla, Panchuk Myroslav, Korohodskyi Volodymyr, Prunko Igor, Mykytii Ivan, Improvement of Diesel Engine Parameters by Using of Alcohol Conversion, in Chemmotological Aspects of Sustainable Development of Transport, 2022. Crossref

将发表的论文

APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Low-Cost Photovoltaic Emulator With a High-Dynamic Response for Small Satellite Applications Mauricio Troviano, Germán G. Oggier Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin CFD modeling of the combustion of Ukrainian coal and biomass in a flare boiler unit TPP-210a Alexandr Baranyuk, Nataliya Dunayevska, Artur Rachinsky, Nikita Vorobyov, Petro Merenger, Evgeniy Shevel An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain