图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际清洁环境能源期刊
SJR: 0.195 SNIP: 0.435 CiteScore™: 0.74

ISSN 打印: 2150-3621
ISSN 在线: 2150-363X

国际清洁环境能源期刊

Formerly known as Clean Air: International Journal on Energy for a Clean Environment

DOI: 10.1615/InterJEnerCleanEnv.v7.i3.30
pages 221-238

CH4, H2S, AND SO2 OXIDATION ON Pt CATALYSTS

V. Dupont
Energy and Resources Research Institute, University of Leeds, Leeds LS2 9JT, UK
S.-H. Zhang
Thermal Engineering and Fluids Division, Beijing Institute of Civil Engineering and Architecture, Beijing 100044, China
J. M. Jones
Energy and Resources Research Institute / Centre for Computational Fluid Dynamics, University of Leeds, Leeds LS2 9JT, UK
G. Rickett
Energy and Resources Research Institute, University of Leeds, Leeds LS2 9JT, UK
M. V. Twigg
Johnson Matthey, Catalytic Systems Division, Royston SG8 5HE, UK

ABSTRACT

The kinetic parameters of the lean oxidation of CH4, H2S, and SO2 on a Pt foil and on Pt/Al2O3 and Pt/CeO2/Al2O3 catalysts were derived in a stagnation point flow reactor under atmospheric pressure and at temperatures up to 900 °C. Kinetic mechanisms were devised using a novel methodology. Doping the N2-diluted CH4-air reactant flow with H2S and SO2 concentrations had a significant promotional effect on the methane combustion rate for all Pt catalysts tested. At the temperatures tested, alumina and alumina-ceria supports oxidized only H2S to SO2, showing no net conversion of CH4 to CO2 or of SO2 to SO3. In contrast, Pt foil and the supported Pt were good catalysts of CH4, H2S, and SO2 oxidation. A temperature window of conversion of SO2 to SO3 on the Pt/Al2O3 catalyst was observed. This window could be used in SOx removal techniques of combustion exhausts. One-step and two-step chemical reaction mechanisms were devised for the CH4 and SO2 oxidations, respectively. The conversion of H2S and its selectivity to SO2 and SO3 on the Pt-alumina catalysts were accurately reproduced using a three-step mechanism.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF NATURAL GAS COMBUSTION IN OXYGEN/EXHAUST GAS MIXTURES FOR ZERO EMISSIONS POWER GENERATION
International Journal of Energy for a Clean Environment, Vol.5, 2004, issue 2
T. Griffin, M. Reinke, R. Carroni, D. Winkler
RDX AND HMX FLAME STRUCTURE AT A PRESSURE OF 0.1 MPa
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 3
Evgeny N. Volkov, Oleg P. Korobeinichev, Alexander A. Paletsky
ZnO-NANOPARTICLES DECORATED ON CeO2 NANORODS: AN EFFICIENT CATALYST FOR CO OXIDATION
Catalysis in Green Chemistry and Engineering, Vol.1, 2018, issue 4
Benjaram Mahipal Reddy, Damma Devaiah, Deboshree Mukherjee, Perala Venkataswamy, Muga Vithal
COMBUSTION SYNTHESIS OF SiO, IN PREMIXED FLAMES
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
E. Zhao, H. K. Ma, Chun-Liang Yeh
Role of CO2 in the Soot Formation and Reduction Mechanisms in CH4 Flat Flame Doped with Toluene under O2/CO2 Environments
International Heat Transfer Conference 15, Vol.7, 2014, issue
Shunsuke Sugai, Ken Okazaki, Hirotatsu Watanabe