图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
真核基因表达评论综述™
影响因子: 2.156 5年影响因子: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN 打印: 1045-4403
ISSN 在线: 2162-6502

真核基因表达评论综述™

DOI: 10.1615/CritRevEukaryotGeneExpr.v13.i1.20
16 pages

Centrosomes, Genomic Instability, and Cervical Carcinogenesis

Stefan Duensing
Harvard Medical School, Department of Pathology, Armenise 537, 200 Longwood Avenue, Boston, MA 02115
Karl Munger
Harvard Medical School, Department of Pathology, Armenise 537, 200 Longwood Avenue, Boston, MA 02115

ABSTRACT

High-risk human papillomavirus (HPV)–associated carcinogenesis of the uterine cervix is a particularly useful model to study basic mechanisms of genomic instability in cancer. Cervical carcinogenesis is associated with the expression of two high-risk HPV-encoded oncoproteins, E6 and E7. Aneuploidy, the most frequent form of genomic instability in human carcinomas, develops as early as in nonmalignant cervical precursor lesions. In addition, cervical neoplasia is frequently associated with abnormal multipolar mitotic figures, suggesting disturbances of the cell-division process as a mechanism for chromosome segregation defects. Spindle poles are formed by centrosomes, and the high-risk HPV E6 and E7 oncoproteins can each induce abnormal centrosome numbers. These two HPV oncoproteins, however, induce centrosome abnormalities through fundamentally different mechanisms and, presumably, with different functional consequences. High-risk HPV E7, which targets the pRB tumor suppressor pathway, can provoke abnormal centrosome duplication in phenotypically normal cells. On the contrary, cells expressing the HPV E6 oncoprotein, which inactivates p53, accumulate abnormal numbers of centrosomes in parallel with multinucleation and nuclear atypia. These two pathways are not mutually exclusive, since co-expression of HPV E6 and E7 has synergistic effects on centrosome abnormalities and chromosomal instability. Taken together, these findings support the general model in which chromosomal instability arises as a direct consequence of oncogenic insults and can develop at early stages of tumor progression.


Articles with similar content:

Genetic and Epigenetic Control of RKIP Transcription
Critical Reviews™ in Oncogenesis, Vol.19, 2014, issue 6
Milad S. Bitar, Kevin Qin, Kam C. Yeung, Fahd Al-Mulla, Hanna Tegegne, Ila Datar, Robert J. Trumbly
The Role of Transcription Factor YY1 in the Biology of Cancer
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 1-2
Neeraj Agarwal, Dan Theodorescu
The Oncogenic Role of Human Papillomavirus Proteins
Critical Reviews™ in Oncogenesis, Vol.7, 1996, issue 1-2
Miguel S. Barbosa
Tumor Suppressor Maspin as a Rheostat in HDAC Regulation to Achieve the Fine-Tuning of Epithelial Homeostasis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.22, 2012, issue 3
M. Margarida Bernardo, Shijie Sheng, Sijana Dzinic, Alexander Kaplun
Oncogenic Activation of the ret Protooncogene in Thyroid Cancer
Critical Reviews™ in Oncogenesis, Vol.6, 1995, issue 1
Masahide Takahashi