图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
真核基因表达评论综述™
影响因子: 2.156 5年影响因子: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN 打印: 1045-4403
ISSN 在线: 2162-6502

真核基因表达评论综述™

DOI: 10.1615/CritRevEukaryotGeneExpr.2015013358
pages 91-112

Zingiber officinale and Type 2 Diabetes Mellitus: Evidence from Experimental Studies

Muhammad Sajid Hamid Akash
Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
Kanwal Rehman
Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
Muhammad Tariq
Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
Shuqing Chen
Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China

ABSTRACT

Zingiber officinale is being used as diet-based therapy because of its wide therapeutic potential in type 2 diabetes mellitus (T2DM) and against diabetic complications by directly interacting with different molecular and cellular pathways that provoke the pathogenesis of T2DM. This article explores the overall beneficial effects of Z. officinale on T2DM and its associated complications. Along with elucidating the beneficial facts of Z. officinale, this article may also aid in understanding the molecular basis of its effects in T2DM. The mechanistic rationale for antidiabetic effects of Z. officinale includes the inhibition of several transcriptional pathways, lipid peroxidation, carbohydrate-metabolizing enzymes, and HMG-CoA reductase and the activation of antioxidant enzyme capacity and low-density lipoprotein receptors. Consequently, by targeting these pathways, Z. officinale shows its antidiabetic therapeutic effects by increasing insulin sensitivity/synthesis, protecting β-cells of pancreatic islets, reducing fat accumulation, decreasing oxidative stress, and increasing glucose uptake by the tissues. In addition to these effects, Z. officinale also exhibits protective effects against several diabetes-linked complications, notably nephropathy and diabetic cataract, by acting as an antioxidant and antiglycating agent. In conclusion, this work suggests that consumption of Z. officinale can help to treat T2DM and diabetic complications; nevertheless, patient counseling also is required as a guiding force for the success of diet-based therapy in T2DM.


Articles with similar content:

Lead Acetate-Induced Hepatoxicity in Wistar Rats: Possible Protective Role of Combination Therapy
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 1
Amita Jaswal, Sadhana Shrivastava, Samta Sharma, Suchita Raghuvanshi, Sangeeta Shukla
Antimelanogenesis and Anti-Inflammatory Activity of Selected Culinary-Medicinal Mushrooms
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 2
Yee Shin Tan, Hazwani Mat Saad, Kae Shin Sim
Black Tea-Induced Amelioration of Hepatic Oxidative Stress through Antioxidative Activity in EAC-Bearing Mice
Journal of Environmental Pathology, Toxicology and Oncology, Vol.26, 2007, issue 4
Sreya Chattopadhyay, Tanya Das, Arindam Bhattacharyya, Gaurisankar Sa, Lakshmishri Lahiry, Uttam K. Ghosh, Sankar Bhattacharyya, Deba Prasad Mandal
Mechanisms Behind the Anti-inflammatory Actions of Insulin
Critical Reviews™ in Immunology, Vol.31, 2011, issue 4
Morley D. Hollenberg, Eric Hyun, Rithwik Ramachandran, Nathalie Vergnolle
Immune Functions of Serum Amyloid A
Critical Reviews™ in Immunology, Vol.32, 2012, issue 4
Kari K. Eklund, K. Niemi, P. T. Kovanen