图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
真核基因表达评论综述™
影响因子: 1.841 5年影响因子: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN 打印: 1045-4403
ISSN 在线: 2162-6502

真核基因表达评论综述™

DOI: 10.1615/CritRevEukaryotGeneExpr.2015013626
pages 175-190

The Role of PARP-1 in Host−Pathogen Interaction and Cellular Stress Responses

Hui Li
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing, China
Qiming Li
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
Wu Li
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing, China
Longxiang Xie
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
Mingliang Zhou
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing, China
Jianping Xie
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China

ABSTRACT

Cells are exposed to diverse stresses; poly(ADP-ribose) polymerase-1 (PARP-1), which processes diverse signals and directs cells to specific fates (survival or death), is a key player in responses to cellular stress. PARP-1 usually uses NAD+ as a donor of ADP-ribose units to regulate the synthesis of poly(ADP-ribose). Over 100 novel substrates of PARP-1 have been identified, most of which are involved in cellular processes such as ribosome biogenesis and transcription regulation. In addition, PARP-1 functions in inflammation by modulating inflammatory-relevant gene expression. PARP-1 also is involved in the tissue damage caused by ischemia/reperfusion conditions. Common inflammatory mediators (inducible nitric oxide synthase, interleukin [IL]-1β, and tumor necrosis factor-α) are regulated by PARP-1, which helps amplify nuclear factor-κB-mediated inflammation. PARP-1 plays a role in adaptive immunity by modulating the ability of dendritic cells to stimulate T cells. The expression of several genes (such as IL-2 and IL-10) and T-cell proliferation also are controlled by the activation of PARP-1. Inhibition of PARP-1 enzymatic activity attenuates the secretion of proinflammatory cytokines and therefore alleviates autoimmune diseases. PARP inhibitors may represent a new avenue for disease treatment.