图书馆订阅: Guest
真核基因表达评论综述™

每年出版 6 

ISSN 打印: 1045-4403

ISSN 在线: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Role of Oxidative Stress and Antioxidant Defense Biomarkers in Neurodegenerative Diseases

卷 30, 册 4, 2020, pp. 311-322
DOI: 10.1615/CritRevEukaryotGeneExpr.2020029202
Get accessGet access

摘要

Oxidative stress is caused by an imbalance in a redox system. It may involve either excessive production of reactive oxygen species or dysfunction of the antioxidant defense system. Unlike other viscera, the brain is especially highly susceptible to oxidative damage because of it requires a high oxygen level and contains an abundance of peroxida-tion-susceptible lipid cells. Oxidative stress is among the common etiological factors involved in neurodegeneration. To measure The extent of oxidative stress is measured with several indicators or biomarkers that are known to arise from oxidation of major biomolecules, including lipids, proteins, carbohydrates, and nucleic acids. In this review, we will discuss oxidative stress biomarkers associated with neurodegenerative diseases, for instance, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. We will also highlight the biomarkers of antioxidant defense mechanisms that are impaired in these diseases.

参考文献
  1. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-62.

  2. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HHHW, Ghezzi P. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23:1144-70.

  3. Kinkade JM Jr, Shapira R, Jensen PE, Le N-A, Pohl J, Brown WV, inventors; Emory University, assignee. Biomarkers of oxidative stress. United States Patent US6953666. 2005 Oct 11.

  4. Galasko D, Montine TJ. Biomarkers of oxidative damage and inflammation in Alzheimer's disease. Biomark Med. 2010;4:27-36.

  5. Halliwell B, Lee CYJ. Using isoprostanes as biomarkers of oxidative stress: Some rarely considered issues. Anti-oxid Redox Signal. 2010;13:145-56.

  6. Roberts LJ, Milne GL. Isoprostanes. J Lipid Res. 2009;50:S219-23.

  7. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ II. Isoprostane generation and function. Chem Rev. 2011;111:5973-96.

  8. Roberts LJ II, Morrow JD. Products of the isoprostane pathway: Unique bioactive compounds and markers of lipid peroxidation. Cell Mol Lif Sci. 2002;59:808-20.

  9. Hardy KD, Cox BE, Milne GL, Yin H, Roberts LJ II. Nonenzymatic free radical-catalyzed generation of 15-de-oxy-A1214-prostaglandin J2-like compounds (deoxy-J2-iso-prostanes) in vivo. J Lipid Res. 2011;52:113-24.

  10. Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ II, Morrow JD. Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic Biol Med. 2002;33:620-6.

  11. Pratico D, Clark CM, Liun F, Rokach J, Lee VY-M, Trojanowski JQ. Increase of brain oxidative stress in mild cognitive impairment: A possible predictor of Alzheimer disease. Arch Neurol. 2002;59:972-6.

  12. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD. Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol. 2005;58:730-5.

  13. Boutaud O, Ou JJ, Chaurand P, Caprioli RM, Montine TJ, Oates JA. Prostaglandin H2 (PGH2) accelerates formation of amyloid P1-42 oligomers. J Neurochem. 2002;82:1003-6.

  14. Greco A, Minghetti L, Levi G. Isoprostanes, novel markers of oxidative injury, help understanding the patho-genesis of neurodegenerative diseases. Neurochem Res. 2000;25:1357-64.

  15. Browne SE, Beal MF. Oxidative damage in Huntington's disease pathogenesis. Antioxid Redox Signal. 2006;8:2061-73.

  16. Montine TJ, Beal MF, Robertson D, Cudkowicz ME, Biaggioni I, O'Donnell H, Zackert WE, Roberts LJ, Morrow JD. Cerebrospinal fluid F2-isoprostanes are elevated in Huntington's disease. Neurology. 1999;52:1104-5.

  17. Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu H-C, Mahata J, Kilty M, Bednarz K, Bell D, Gordon PH, Hornig M, Mehrazin M, Naini A, Beal MF, Factor-Litvaak P. Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scl. 2008;9:177-83.

  18. Milne GL, Gao B, Terry ES, Zackert WE, Sanchez SC. Measurement of F2-isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Radic Biol Med. 2013;59:36-44.

  19. Casetta B, Longini M, Proietti F, Perrone S, Buonocore G. Development of a fast and simple LC-MS/MS method for measuring the F2-isoprostanes in newborns. J Matern Fetal Neonatal Med. 2012;25:114-8.

  20. Awad JA, Morrow JD, Takahashi K, Roberts LJ II. Iden-tification of non-cyclooxygenase-derived prostanoid (F2-isoprostane) metabolites in human urine and plasma. J Biol Chem. 1993;268:4161-9.

  21. Milne GL, Sanchez SC, Musiek ES, Morrow JD. Quan-tification of F2-isoprostanes as a biomarker of oxidative stress. Nat Protoc. 2007;2:221-6.

  22. Il'yasova D, Morrow JD, Ivanova A, Wagenknecht LE. Epidemiological marker for oxidant status: Comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F2t-isoprostane. Ann Epidemiol. 2004;14:793-7.

  23. Spickett CM. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol. 2013;1:145-52.

  24. Esterbauer H, Benedetti A, Lang J, Fulceri R, Fauler G, Comporti M. Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation. Biochim Biophys Acta. 1986;876:154-66.

  25. Gueraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res. 2010;44:1098-124.

  26. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990;186:1-85.

  27. Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G, Butterfield DA. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem. 1997;69:1161-9.

  28. Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med. 2011;51:1302-19.

  29. Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-non-enal, a reactive product of lipid peroxidation, and neuro-degenerative diseases: A toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal. 2012;17:1590-609.

  30. Lovell MA, Ehmann WD, Mattson MP, Markesbery WR. Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer's disease. Neurobiol Aging. 1997;18:457-61.

  31. Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. Neurobiol Aging. 1998;19:33-6.

  32. Montine KS, Kim PJ, Olson SJ, Markesbery WR, Montine TJ. 4-Hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J Neuropathol Exp Neurol. 1997;56:866-71.

  33. Drake J, Petroze R, Castegna A, Ding Q, Keller JN, Markesbery WR, Lovell MA, Butterfield DA. 4-Hydroxynonenal oxidatively modifies histones: Implications for Alzheimer's disease. Neurosci Lett. 2004;356:155-8.

  34. Bruce-Keller A J, Li YJ, Lovell MA, Kraemer PJ, Gary DS, Brown RR, Markesbery WR, Mattson MP. 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J Neuropathol Exp Neurol. 1998;57:257-67.

  35. Sofic E, Lange KW, Jellinger K, Riederer P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci Lett. 1992; 142:128-30.

  36. Dexter D, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD. Lipid peroxidation as cause of nigral cell death in Parkinson's disease. Lancet. 1986;328:639-40.

  37. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787-95.

  38. Lee J, Kosaras B, Del Signore SJ, Cormier K, McKee A, Ratan RR, Kowall NW, Ryu H. Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington's disease mice. Acta Neuropathol. 2011;121:487-98.

  39. Smith RG, Henry YK, Mattson MP, Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1998;44:696-9.

  40. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol. 1998;44:819-24.

  41. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: The role of Api-42. J Neurochem. 2001;78:413-6.

  42. Perluigi M, Poon HF, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice-a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med. 2005;38:960-8.

  43. Esterbauer H, Schaur RJ, Zollner H. Chemistry and bio-chemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81-128.

  44. Wakita C, Honda K, Shibata T, Akagawa M, Uchida K. A method for detection of 4-hydroxy-2-nonenal adducts in proteins. Free Radic Biol Med. 2011;51:1-4.

  45. Gueraud F, Tache S, Steghens J-P, Milkovic L, Borovic-Sunjic S, Zarkovic N, Gaultier E, Naud N, Helies-Toussaint C, Pierre F, Priymenko N. Dietary poly-unsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats. Free Radic Biol Med. 2015;83:192-200.

  46. Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RCM, Wiswedel I, Zarkovic K, Zarkovic N. Pathological aspects of lipid peroxidation. Free Radic Res. 2010;44:1125-71.

  47. Wang X, Lei XG, Wang J. Malondialdehyde regulates glucose-stimulated insulin secretion in murine islets via TCF7L2-dependent Wnt signaling pathway. Mol Cell Endocrinol. 2014;382:8-16.

  48. Garcia-Ruiz I, De la Torre P, Diaz T, Esteban E, Fernandez I, Munoz-Yague T, Solis-Herruzo JA. Sp1 and Sp3 transcription factors mediate malondialdehyde-induced collagen a1(I) gene expression in cultured hepatic stellate cells. J Biol Chem. 2002;277:30551-8.

  49. Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-reactive substances and anti-oxidant enzyme activity in the brain in Alzheimer's disease. Neurology. 1995;45:1594-601.

  50. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Strafaci JA, Freedman ML. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer's disease. Exp Neurol. 1998;150:40-4.

  51. Miranda MD, de Bruin VM, Vale MR, Viana GS. Lipid peroxidation and nitrite plus nitrate levels in brain tissue from patients with Alzheimer's disease. Gerontology. 2000;46:179-84.

  52. Montine KS, Reich E, Neely MD, Sidell KR, Olson SJ, Markesbery WR, Montine TJ. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J Neuropathol Exp Neurol. 1998;7:415-25.

  53. Bermejo P, Gomez-Serranillos P, Santos J, Pastor E, Gil P, Martin-Aragon S. Determination of malonaldehyde in Alzheimer's disease: A comparative study of high-performance liquid chromatography and thiobarbituric acid test. Gerontology. 1997;43:218-22.

  54. Ilic TV, Jovanovic M, Jovicic A, Tomovic M. Oxidative stress indicators are elevated in de novo Parkinson's disease patients. Funct Neurol. 1999;14:141-7.

  55. Kienzl E, Jellinger K, Stachelberger H, Linert W. Iron as catalyst for oxidative stress in the pathogenesis of Parkinson's disease? Life Sci. 1999;65:1973-6.

  56. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH Jr, Beal MF. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69:2064-74.

  57. Desnuelle C, Dib M, Garrel C, Favier A. A double-blind, placebo-controlled randomized clinical trial of a-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2:9-18.

  58. Young IS, Trimble ER. Measurement of malondialdehyde in plasma by high performance liquid chromatography with fluorimetric detection. Ann Clin Biochem. 1991;28:504-8.

  59. Bradley MA, Markesbery WR, Lovell MA. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med. 2010;48:1570-6.

  60. Lyubartseva G, Smith JL, Markesbery WR, Lovell MA. Alterations of zinc transporter proteins ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer's disease brain. Brain Pathol. 2010;20:343-50.

  61. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK. Mitochondrial a-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett. 2010;486:235-9.

  62. Shamoto-Nagai M, Maruyama W, Hashizume Y, Yoshida M, Osawa T, Riederer P, Naoi M. In parkinsonian substantia nigra, a-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm (Vienna). 2007;114:1559-67.

  63. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev. 1998;30:225-43.

  64. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272:20313-6.

  65. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24:325-40.

  66. Danielson SR, Andersen JK. Oxidative and nitrative protein modifications in Parkinson's disease. Free Radic Biol Med. 2008;44:1787-94.

  67. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med. 2008;45:667-78.

  68. Martinez A, Portero-Otin M, Pamplona R, Ferrer I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol. 2010;20:281-97.

  69. Bartesaghi S, Ferrer-Sueta G, Peluffo G, Valez V, Zhang H, Kalyanaraman B, Radi R. Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids. 2007;32:501-15.

  70. Reed TT, Pierce Jr WM, Turner DM, Markesbery WR, Butterfield DA. Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule. J Cell Mol Med. 2009;13:2019-29.

  71. Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttila T. Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain. Neurobiol Aging. 2006;27:42-53.

  72. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis. 2006;22:76-87.

  73. Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM-Y, Trojanowski JQ. Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol. 2000;157:1439-45.

  74. Yeo WS, Kim YJ, Kabir MH, Kang JW, Ahsan-Ul-Bari M, Kim KP. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. Mass Spectrom Rev. 2015;34:166-83.

  75. Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. J Neurol Sci. 2012;317:1-5.

  76. Kuhla A, Ludwig SC, Kuhla B, Munch G, Vollmar B. Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer's disease brain. Neurobiol Aging. 2015;36:753-61.

  77. Li JJ, Voisin D, Quiquerez AL, Bouras C. Differential expression of advanced glycosylation end-products in neurons of different species. Brain Res. 1994;641:285-8.

  78. Munch G, Mayer S, Michaelis J, Hipkiss AR, Riederer P, Muller R, Neumann A, Schinzel R, Cunningham AM. Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of P-amyloid peptide. Biochim Biophys Acta. 1997;1360:17-29.

  79. Padmaraju V, Bhaskar JJ, Prasada Rao UJS, Salimath PV, Rao KS. Role of advanced glycation on aggregation and DNA binding properties of a-synuclein. J Alzheimers Dis. 2011;24:211-21.

  80. Chen L, Wei Y, Wang X, He R. Ribosylation rapidly induces a-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS One. 2010;5:e9052.

  81. Dalfo E, Portero-Otln M, Ayala V, Martinez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol. 2005;64:816-30.

  82. Kunert C, Skurk T, Frank O, Lang R, Hauner H, Hofmann T. Development and application of a stable isotope dilution analysis for the quantitation of advanced glycation end products of creatinine in biofluids of type 2 diabetic patients and healthy volunteers. Anal Chem. 2013;85:2961-9.

  83. Hohmann C, Liehr K, Henning C, Fiedler R, Girndt M, Gebert M, Hulko M, Storr M, Glomb MA. Detection of free advanced glycation end products in vivo during hemodialysis. J Agric Food Chem. 2017;65:930-7.

  84. Hofer T, Fontana L, Anton SD, Weiss EP, Villareal D, Malayappan B, Leeuwenburgh C. Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans. Rejuvenation Res. 2008;11:793-9.

  85. Barbagallo M, Marotta F, Dominguez LJ. Oxidative stress in patients with Alzheimer's disease: Effect of extracts of fermented papaya powder. Mediators Inflamm. 2015;2015:624801.

  86. Moslemnezhad A, Mahjoub S, Moghadasi M. Altered plasma marker of oxidative DNA damage and total antioxidant capacity in patients with Alzheimer's disease. Caspian J Intern Med. 2016;7:88-92.

  87. Gmitterova K, Heinemann U, Gawinecka J, Varges D, Ciesielczyk B, Valkovic P, Benetin J, Zerr I. 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener Dis. 2009;6:263-9.

  88. Aguirre N, Beal MF, Matson WR, Bogdanov MB. Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis. Free Radic Res. 2005;39:383-8.

  89. Kumar A, Ratan RR. Oxidative stress and Huntington's disease: The good, the bad, and the ugly. J Huntingtons Dis. 2016;5:217-37.

  90. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44-84.

  91. Mehler MF, Mattick JS. Non-coding RNAs in the nervous system. J Physiol. 2006;575:333-41.

  92. Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G. Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med. 2008;44:1493-505.

  93. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. J Neurosci. 1999;19:1959-64.

  94. Nunomura A, Moreira PI, Castellani RJ, Lee HG, Zhu X, Smith MA, Perry G. Oxidative damage to RNA in aging and neurodegenerative disorders. Neurotoxic Res. 2012;22:231-48.

  95. Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65:631-41.

  96. Nunomura A, Tamaoki T, Tanaka K, Motohashi N, Na- kamura M, Hayashi T, Yamaguchi H, Shimohama S, Lee HG, Zhu X, Smith MA, Perry G. Intraneuronal amyloid P accumulation and oxidative damage to nucleic acids in Alzheimer disease. Neurobiol Dis. 2010;37:731-7.

  97. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol. 1999; 154:1423-9.

  98. Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, Rothstein JD, Borchelt DR, Wong PC, Lin CLG. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One. 2008;3:e2849.

  99. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19.

  100. Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chyu DW, Brooks GA, Ames BN. Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol (1985). 2000; 89:21-8.

  101. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53: 4094-125.

  102. Lovell M, Xie C, Markesbery WR. Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer's disease. Neurology. 1998;51:1562-6.

  103. Casado A, Lopez-Fernandez ME, Casado MC, de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2008;33:450-8.

  104. Kim TS, Pae CU, Yoon SJ, Jang WY, Lee NJ, Kim JJ, Lee SJ, Lee C, Paik IH, Lee CU. Decreased plasma antioxidants in patients with Alzheimer's disease. Int J Geriatr Psych. 2006;21:344-8.

  105. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994;36:348-55.

  106. Verma R, Nehru B. Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson's disease. Neurochem Int. 2009;55:369-75.

  107. Chen CM, Yin MC, Hsu CC, Liu TC. Antioxidative and anti-inflammatory effects of four cysteine-containing agents in striatum of MPTP-treated mice. Nutrition. 2007;23:589-97.

  108. Oteiza PI, Uchitel OD, Carrasquedo F, Dubrovski AL, Roma JC, Fraga CG. Evaluation of antioxidants, protein, and lipid oxidation products in blood from sporadic amiotrophic lateral sclerosis patients. Neurochem Res. 1997;22:535-9.

  109. Babu GN, Kumar A, Chandra R, Puri SK, Singh RL, Kalita J, Misra UK. Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem Int. 2008;52:1284-9.

  110. Weiduschat N, Mao X, Hupf J, Armstrong N, Kang G, Lange DJ, Mitsumoto H, Shungu DC. Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci Lett. 2014;570:102-7.

  111. Tunez I, Sanchez-Lopez F, Aguera E, Fernandez-Bolanos R, Sanchez FM, Tasset-Cuevas I. Important role of oxidative stress biomarkers in Huntington's disease. J Med Chem. 2011;54:5602-6.

对本文的引用
  1. Petrovic Snjezana, Arsic Aleksandra, Ristic-Medic Danijela, Cvetkovic Zorica, Vucic Vesna, Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies, Antioxidants, 9, 11, 2020. Crossref

  2. Tsubaki Haruka, Tooyama Ikuo, Walker Douglas Gordon, Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases, International Journal of Molecular Sciences, 21, 24, 2020. Crossref

  3. Ilari Sara, Lauro Filomena, Giancotti Luigino Antonio, Malafoglia Valentina, Dagostino Concetta, Gliozzi Micaela, Condemi Antonia, Maiuolo Jessica, Oppedisano Francesca, Palma Ernesto, Tomino Carlo, Salvemini Daniela, Mollace Vincenzo, Muscoli Carolina, The Protective Effect of Bergamot Polyphenolic Fraction (BPF) on Chemotherapy-Induced Neuropathic Pain, Pharmaceuticals, 14, 10, 2021. Crossref

  4. Lehman Bettina J., Lopez-Diaz Fernando J., Santisakultarm Thom P., Fang Linjing, Shokhirev Maxim N., Diffenderfer Kenneth E., Manor Uri, Emerson Beverly M., Papantonis Argyris, Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress, PLOS Genetics, 17, 1, 2021. Crossref

  5. Maciejczyk Mateusz, Żebrowska Ewa, Nesterowicz Miłosz, Supruniuk Elżbieta, Choromańska Barbara, Chabowski Adrian, Żendzian-Piotrowska Małgorzata, Zalewska Anna, α-Lipoic Acid Reduces Ceramide Synthesis and Neuroinflammation in the Hypothalamus of Insulin-Resistant Rats, While in the Cerebral Cortex Diminishes the β-Amyloid Accumulation, Journal of Inflammation Research, Volume 15, 2022. Crossref

  6. Refaay Dina A., Ahmed Dalia M., Mowafy Amr M., Shaaban Saad, Evaluation of novel multifunctional organoselenium compounds as potential cholinesterase inhibitors against Alzheimer’s disease, Medicinal Chemistry Research, 31, 6, 2022. Crossref

  7. Ko Jiwon, Jang Soyoung, Kwon Wookbong, Kim Si-Yong, Jang Soyeon, Kim Eungyung, Ji Young-Rae, Park Sijun, Kim Myoung-Ok, Choi Seong-Kyoon, Cho Dong-Hyung, Lee Hyun-Shik, Lim Su-Geun, Ryoo Zae-Young, Protective Effect of GIP against Monosodium Glutamate-Induced Ferroptosis in Mouse Hippocampal HT-22 Cells through the MAPK Signaling Pathway, Antioxidants, 11, 2, 2022. Crossref

  8. Tsubaki Haruka, Mendsaikhan Anarmaa, Buyandelger Undral, Tooyama Ikuo, Walker Douglas G., Localization of Thioredoxin-Interacting Protein in Aging and Alzheimer’s Disease Brains, NeuroSci, 3, 2, 2022. Crossref

  9. Islam Fahadul, Nafady Mohamed H., Islam Md. Rezaul, Saha Susmita, Rashid Salma, Akter Aklima, Or-Rashid Md. Harun-, Akhtar Muhammad Furqan, Perveen Asma, Md. Ashraf Ghulam, Rahman Md. Habibur, Hussein Sweilam Sherouk, Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside, Molecular Neurobiology, 59, 7, 2022. Crossref

  10. Zhou Fangwei, Zhang Tian, Jin Ying, Ma Yifei, Li Yangsong, Zeng Mengting, Yu Guodong, Unveiling the knowledge domain and emerging trends of olfactory dysfunction with depression or anxiety: A bibliometrics study, Frontiers in Neuroscience, 16, 2022. Crossref

  11. Reina Miguel, Guzmán‐López Eduardo Gabriel, Galano Annia, Computational design of rasagiline derivatives: Searching for enhanced antioxidant capability, International Journal of Quantum Chemistry, 2022. Crossref

  12. Batista Marta Maria da Silva Lira, Siqueira Marcela Lima Silagi, Lima Gleydyson Wesley Freire, Silva Jaynara Keylla Moreira da, Silva Maria Rita Carvalho, França Laureni Dantas de, Galhardoni Ricardo, Silva Janyerson Dannys Pereira da, Benigno Maria Ivone Mendes, Moura Filho Oseas Florêncio de, Martins Maria Do Carmo De Carvalho, Effects of neuromodulation on executive functions and food desires in individuals with obesity: a systematic review, Nutrición Hospitalaria, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain