图书馆订阅: Guest
国际药用蘑菇期刊

每年出版 12 

ISSN 打印: 1521-9437

ISSN 在线: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

The Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Agaricomycetes), a Versatile Functional Species: A Review

卷 22, 册 3, 2020, pp. 245-255
DOI: 10.1615/IntJMedMushrooms.2020033988
Get accessGet access

摘要

Coprinus comatus, an edible and medicinal mushroom, not only tastes delicious, but also has various pharmacological activities. Recently, it has been reported that researchers have extracted more and more active ingredients, including polysaccharides, comatin, active protein complexes, and phenols from fruit bodies, mycelium, or fermentation liquor of C. comatus and studied their corresponding functions. At present, researchers mainly focus on the hypoglycemic effect of C. comatus, while other effects are less studied. This paper summarizes not only the hypoglycemic effect of C. comatus, but also other functions, such as antioxidant activity, alcohol liver protection, cancer inhibition, antiandrogenic function, anti-inflammatory effect, treatment of leukemia, and so on, which will provide scientific basis for the deep processing and comprehensive utilization of C. comatus.

参考文献
  1. Stojkovic D, Reis FS, Barros L, Glamoclija J, Ciric A, van Griensven L, Stojkovic M, Ferreira I. Nutrients and non-nutrients composition and bioactivity of wild and cultivated Coprinus comatus (O.F.Mull.) Pers. Food Chem Toxicol. 2013;9(59):289-96.

  2. Tsai SY, Tsai HL, Mau JL. Nonvolatile taste components of fruit bodies and mycelia of shaggy ink cap mushroom Coprinus comatus (O.F. Mull.: Fr.) Pers. (Agaricomycetidae). Int J Med Mushrooms. 2007;9(1):47-55.

  3. Chen Q, Liu J, Chen S. Coprinus comatus, Agaricus subrufescens, Stropharia rugoso-annulata production book. Beijing: China Agriculture Press; 2009.

  4. Zhao C, Chen S, Peng L, Cheng Y, Ye X, Chen J. Research progress in the bioactive compounds of Coprinus comatus. Sci Technol Food Ind. 2012;33(5):429-32 [in Chinese].

  5. Yu J, Cui P, Zeng W, Xie X, Liang W, Lin G, Zeng L. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem. 2009;117(1):42-7.

  6. Tsai S, Tsai H, Mau J. Antioxidant properties of Coprinus comatus. J Food Biochem. 2009;33(3):368-89.

  7. Alves M, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med. 2012;78(16):1707-18.

  8. Bailey CJ, Turner SL, Jakeman KJ. Effect of Coprinus comatus on plasma glucose concentrations in mice. Planta Med. 1984;50(6):525-26.

  9. Sabo A, Stilinovic N, Vukmirovic S, Bukumiric Z, Capo I, Jakovljevic V. Pharmacodynamic action of a commercial preparation of the mushroom Coprinus comatus in rats. Phytother Res. 2010;24(10):1532-37.

  10. Zhou S, Liu Y, Yang Y, Tang Q, Zhang J. Hypoglycemic activity of polysaccharide from fruiting bodies of the shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes), on mice induced by alloxan and its potential mechanism. Int J Med Mushrooms. 2015;17(10):957-64.

  11. Ding Z, Lu Y, Lu Z, Wang Y, Bie X. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem. 2010;121(1):39-43.

  12. Srivastava AK, Mehdi MZ. Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med. 2005;22(1):2-13.

  13. Domingo JL. Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res. 2002;88(2):97-112.

  14. Kalac P, Niznamska M, Bevilaqua D, Staskova I. Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Sci Total Environ. 1996;177(1):251-58.

  15. Kalac P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000;69(3):273-81.

  16. Wang G, He M, Yi P, Wang J, Li B, Li J, Fu Y, Bai L, Fu Q. Comparison of effects of vanadium absorbed by Coprinus comatus with those of inorganic vanadium on bone in streptozotocin-diabetic rats. Biol Trace Elem Res. 2012;149(3):391-98.

  17. Han C, Yuan J, Wang Y, Li L. Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol. 2006;20(3):191-96.

  18. Wang G, Wang J, Fu Y, Bai L. Systemic treatment with vanadium absorbed by Coprinus comatus promotes femoral fracture healing in streptozotocin-diabetic rats. Biol Trace Elem Res. 2013;151(3):424-33.

  19. Zhou G, Han C. The co-effect of vanadium and fermented mushroom of Coprinus comatus on glycaemic metabolism. Biol Trace Elem Res. 2008;124(1):20-7.

  20. Pei Y, Fu Q. The effects of vanadium (V) absorbed by Coprinus comatus on bone in streptozotocin-induced diabetic rats. Biol Trace Elem Res. 2011;142(3):748-59.

  21. Han C, Cui B, Wang Y. Vanadium uptake by biomass of Coprinus comatus and their effect on hyperglycemic mice. Biol Trace Elem Res. 2008;124(1):35-9.

  22. Singh G, Maurya S, deLampasona MP, Catalan CAN. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol. 2007;45(9):1650-61.

  23. Tesanovic K, Pejin B, Sibul F, Matavulj M, Raseta M, Janjusevic L, Karaman M. A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. J Food Sci Technol. 2017;54(2):430-38.

  24. Li B, Lu F, Suo XM, Nan HJ, Li B. Antioxidant properties of cap and stipe from Coprinus comatus. Molecules. 2010;15(3):1473-86.

  25. Popovic M, Vukmirovic S, Stilinovic N, Capo I, Jakovljevic V. Anti-oxidative activity of an aqueous suspension of commercial preparation of the mushroom Coprinus comatus. Molecules. 2010;15(7):4564-71.

  26. Xu N, Jia RJ, Chen XF, Zhang H, Wang RF. Antioxidant activity in vitro and vivo of polysaccharide from Coprinus comatus. Chin J Biol. 2019;19(1):34-40 [in Chinese].

  27. Zhao H, Zhang J, Liu X, Yang Q, Dong Y, Jia L. The antioxidant activities of alkalic-extractable polysaccharides from Coprinus comatus on alcohol-induced liver injury in mice. Sci Rep. 2018;8(1):11695.

  28. Ozalp FO, Canbek M, Yamac M, Kanbak G, Van Griensven JLD, Uyanoglu M, Senturk H, Kartaya K, Oglakci A. Consumption of Coprinus comatus polysaccharide extract causes recovery of alcoholic liver damage in rats. Pharm Biol. 2014;52(8):994-1002.

  29. Zhao H, Li H, Lai Q, Yang Q, Dong Y, Liu X, Wang W, Zhang J, Jia L. Antioxidant and hepatoprotective activities of modified polysaccharides from Coprinus comatus in mice with alcohol-induced liver injury. Int J Biol Macromol. 2019;127:476-85.

  30. Wasser SP. Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms. 2010;12(1):1-16.

  31. Jiang XG, Lian MX, Han Y, Lv SM. Antitumor and immunomodulatory activity of a polysaccharide from fungus Coprinus comatus (Mull.:Fr.) Gray. Int J Biol Macromol. 2013;58:349-53.

  32. Asatiani MD, Wasser SP, Nevo E, Ruimi N, Mahajna J, Reznik AZ. The shaggy ink cap medicinal mushroom, Coprinus comatus (O.F.Mull.: Fr.) Pers. (Agaricomycetidae) substances interfere with H2O2 induction of the NF-KB pathway through inhibition of IKBa phosphorylation in MCF7 breast cancer cells. Int J Med Mushrooms. 2011;13(1):19-25.

  33. Rouhana-Toubi A, Wasser SP, Agbarya A, Fares F. Inhibitory effect of ethyl acetate extract of the shaggy inc cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) fruit bodies on cell growth of human ovarian cancer. Int J Med Mushrooms. 2013;15(5):457-70.

  34. Rouhana-Toubi A, Wasser SP, Fares F. The shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) extract induces apoptosis in ovarian cancer cells via extrinsic and intrinsic apoptotic pathways. Int J Med Mushrooms. 2015;17(12):1127-36.

  35. Gu Y, Leonardl J. In vitro effects on proliferation, apoptosis and colony inhibition in ER-dependent and ER-independent human breast cancer cells by selected mushroom species. Oncol Rep. 2006;15(2):417-23.

  36. Adi G, Emsen B, KayaA, Kocabas A, Cinar S, Kartal D. Cytotoxicity of some edible mushrooms extracts over liver hepatocellular carcinoma cells in conjunction with their antioxidant and antibacterial properties. Pharmacogn Mag. 2015;11(11):S6-S18.

  37. Baillargeon J, Rose DP. Obesity, adipokines, and prostate cancer (review). Int J Oncol. 2006;28(3):737-45.

  38. DePrimo SE, Diehn M, Nelson JB, Reiter RE, Matese J, Fero M, Tibshirani R, Brown PO, Brooks JD. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol. 2002;3(7):RESEARCH0032.

  39. Burnstein KL. Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem. 2005;95(4):657-69.

  40. Dotan N, Wasser SP, Mahajna J. The culinary-medicinal mushroom Coprinus comatus as a natural antiandrogenic modulator. Integr Cancer Ther. 2011;10(2):148-59.

  41. Dotan N, Wasser SP, Mahajna J. Inhibition of the androgen receptor activity by Coprinus comatus substances. Nutr Cancer. 2011;63(8):1316-27.

  42. Zaidman BZ, Wasser SP, Nevo E, Mahajna J. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol Biol Rep. 2008;35(2):107-17.

  43. Calcagni E, Elenkov I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann NY Acad Sci. 2006;1069(1):62-76.

  44. Schiller M, Metze D, Luger TA, Grabbe S, Gunzer M. Immune response modifiers-mode of action. Exp Dermatol. 2006;15(3):331-41.

  45. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int Immunol. 2008;20(11):1361-68.

  46. Ren J, Shi J, Han C, Zhen Q, Guo J. Isolation and biological activity of triglycerides of the fermented mushroom of Coprinus comatus. BMC Complement Altern Med. 2012;12(1):52-61.

  47. Zhao X, Zou X, Li Q, Cai X, Li L, Wang J, Wang Y, Fang C, Xu F, Huang Y, Chen B, Tang J, Wang H. Total flavones of fermentation broth by co-culture of Coprinus comatus and Morchella esculenta induces an anti-inflammatory effect on LPS-stimulated RAW264.7 macrophages cells via the MAPK signaling pathway. Microb Pathog. 2018;125:431-37.

  48. Stadler M, Hellwig V, Anke MB, Mayer-Bartshmid A, Denzer D, Wiese B. Novel analgesic triglycerides from cultures ofAgaricus macrosporus and other Basidiomycetes as selective inhibitors of neurolysin. J Antibiot (Tokyo). 2005;58(23):775-86.

  49. Shrimpton CN, Smith AI. Soluble neutral metalloproteases: physiological regulators of peptide action. J Peptide Sci. 2000;6(6):251-63.

  50. Wang W, Di Z, Li R, Tian J. Statistical optimization of the content composition precursors using response surface methodology to enhance agaricoglyceride A production from the shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) mycelia. Int J Med Mushrooms. 2015;17(10):977-85.

  51. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8):494-507.

  52. Zhang P, Li K, Yang G, Xia C, Polston J, Li G, Li S, Lin Z, Yang L, Bruner S, Ding Y. Cytotoxic protein from the mushroom possesses a unique mode for glycan binding and specificity. Proc Natl Acad Sci U S A. 2017;114(34):8980-85.

  53. de Carvalho MP, Gulotta G, do Amaral MW, Lunsdorf H, Sasse F, Abraham WR. Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environ Microbiol. 2016;18(11):4254-64.

  54. Zenkova VA, Efremenkova OV, Ershova EY, Tolstych IV, Dudnik YV. Antimicrobial activity of medicinal mushrooms from the genus Coprinus (Fr.) S. F. Gray (Agaricomycetideae). Int J Med Mushrooms. 2003;5(1):37-42.

  55. Chen D, Chen N. The antioxidant and antibacterial activities of polysaccharide from Coprinus comatus were studied by spec-trophotometry. Light Textile Indust Fujian. 2010;12:21-24 [in Chinese].

  56. Luo H, Mo M, Huang X, Li X, Zhang K. Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode. Mycologia. 2004;96(6):1218-24.

  57. Luo H, Liu Y, Fang L, Li X, Tang N, Zhang K. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl Environ Microbiol. 2007;73(12):3916-23.

  58. Liu Y, Li N. Advances in the treatment of Alzheimer's disease with acetylcholinesterase inhibitors [in Chinese]. Shanxi Med J. 2008;37(1):64-6.

  59. Wang Q. Advances in the treatment of Alzheimer's disease with acetylcholinesterase inhibitors [in Chinese]. Sci Technol Infor. 2012;24:127.

  60. Pejin B, Tesanovic K, Jakovljevic D, Kaisarevic S, Sibul F, Raseta M, Karaman M. The polysaccharide extracts from the fungi Coprinus comatus and Coprinellus truncorum do exhibit AChE inhibitory activity. Nat Prod Res. 2017;5:1-5.

  61. Karaman M, Tesanovic K, Novakovic A, Jakovljevic D, Janjusevic L, Sibul F, Pejin B. Coprinus comatus filtrate extract, a novel neuroprotective agent of natural origin. Nat Prod Res. 2018;17:1-5.

  62. Zhao S, Rong CB, Kong C, Liu Y, Xu F, Miao QJ, Wang SX, Wang HX, Zhang GQ. A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus. Biomed Res Int. 2014;2014:417-61.

  63. Park HJ, Yun J, Jang SH, Kang SN, Jeon BS, Ko YG, Kin HD, Won CK, Kim GS, Cho JH. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARy and Akt signaling pathway. PLoS One. 2014;9(9):e105809.

  64. Tang X, Liu B, Deng Q, Zhang R, Li X, Xu H. Strengthening detoxication impacts of Coprinus comatus on nickel and fluoranthene co-contaminated soil by bacterial inoculation. J Environ Manage. 2018;206:633-41.

  65. Bao S, Teng Z. Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolonization potential from Coprinus comatus. Mol Biol Rep. 2013;40(2):1927-36.

  66. Jiang M, Ten Z. Decolorization of synthetic dyes by crude and purified laccases from Coprinus comatus grown under different cultures: the role of major isoenzyme in dyes decolorization. Appl Biochem Biotechnol. 2013;169(2):660-72.

对本文的引用
  1. Li Huili, Tian Yang, Menolli Nelson, Ye Lei, Karunarathna Samantha C., Perez‐Moreno Jesus, Rahman Mohammad Mahmudur, Rashid Md Harunur, Phengsintham Pheng, Rizal Leela, Kasuya Taiga, Lim Young Woon, Dutta Arun Kumar, Khalid Abdul Nasir, Huyen Le Thanh, Balolong Marilen Parungao, Baruah Gautam, Madawala Sumedha, Thongklang Naritsada, Hyde Kevin D., Kirk Paul M., Xu Jianchu, Sheng Jun, Boa Eric, Mortimer Peter E., Reviewing the world's edible mushroom species: A new evidence‐based classification system, Comprehensive Reviews in Food Science and Food Safety, 20, 2, 2021. Crossref

  2. Yang Hailong, Zheng Zhihan, Zhou Huabin, Qu Hang, Gao Haiyan, Proteomics Reveals the Mechanism Underlying the Autolysis of Postharvest Coprinus comatus Fruiting Bodies, Journal of Agricultural and Food Chemistry, 70, 4, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain