图书馆订阅: Guest
国际流体力学研究期刊

每年出版 6 

ISSN 打印: 2152-5102

ISSN 在线: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Computational Modelling of MHD Flow and Mass Transfer in Stretching Sheet with Slip Effects at the Porous Surface

卷 37, 册 3, 2010, pp. 201-223
DOI: 10.1615/InterJFluidMechRes.v37.i3.10
Get accessGet access

摘要

This paper presents a perturbation and numerical analysis of the flow and mass transfer characteristics of Newtonian fluid flowing in a horizontal channel with lower side being a stretching sheet and upper being permeable plate bounded by porous medium in presence of transverse magnetic field. The governing nonlinear equations and their associated boundary conditions are first cast into dimensionless forms by a local non-similar transformation. The resulting equations are then solved using perturbation method and the finite difference scheme. Numerical results for flow and concentration distribution and the skin-friction coefficient have been obtained for different values of the governing parameters numerically and their values are presented through table and graphs. The effects of various physical parameters Hartman number, Reynolds number, slip parameter etc. on dimensionless horizontal and vertical velocities and also on mass transfer characteristics are discussed in detail. In particular, the effect of slip velocity at interfacial surface on skin friction factor is found to be more pronounced in a system for higher value of magnetic field. The results also show that the magnetic field parameter has a significant influence on the fluid flow and mass transfer characteristics.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain