图书馆订阅: Guest
国际流体力学研究期刊

每年出版 6 

ISSN 打印: 2152-5102

ISSN 在线: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Effect of PEM Fuel Cell Operation on Gas Diffusion Layers and Membrane Stresses

卷 35, 册 3, 2008, pp. 219-234
DOI: 10.1615/InterJFluidMechRes.v35.i3.20
Get accessGet access

摘要

A three-dimensional, multi-phase, non-isothermal computational fluid dynamics model of a proton exchange membrane fuel cell has been developed to investigate the hygro- and thermal stresses in PEM fuel cell, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the gas diffusion layers and membrane during operation of a unit cell has been studied and investigated under real cell operating conditions. The results show that the non-uniform distribution of stresses, caused by the temperature gradient in the cell, induces localized bending stresses, which can contribute to delaminating between the membrane and the gas diffusion layers. These stresses may explain the occurrence of cracks and pinholes in the membrane under steady-state loading during regular cell operation. The results show that the maximum von Mises stress in fuel cell for the low, intermediate and high load conditions were 3.12, 3.16, and 3.23 MPa respectively.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain