图书馆订阅: Guest
国际流体力学研究期刊

每年出版 6 

ISSN 打印: 2152-5102

ISSN 在线: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Hydromagnetic Flow Due to Eccentrically Rotating Porous Disk and a Fluid at Infinity

卷 34, 册 6, 2007, pp. 535-547
DOI: 10.1615/InterJFluidMechRes.v34.i6.50
Get accessGet access

摘要

Hydromagnetic flow due to non-coaxial rotations of a porous disk and a fluid at infinity rotating about an axis passes through a fixed point in the presence of a uniform magnetic field is considered. An exact solution of the Navier-Stokes equations obtained for the velocity and temperature field when there is a uniform suction/blowing at the disk. It is seen that the main velocity component fy1 increases with increase in either magnetic parameter M2 or suction parameter S. On the other hand, the cross velocity component gy1 decreases with increase in either magnetic parameter or suction parameter. The flow has a boundary layer structure even in the presence of a blowing at the disk. It is observed that fy1 decreases while gy1 increases with increase in blowing parameter S1. This implies that blowing at the disk causes reduction in the cross velocity of the flow. The expressions of the force and the torque exerted by the fluid on the porous disk is also obtained and discussed for several values of suction/blowing parameter and magnetic parameter. It is seen that no torque is exerted by the fluid on the disk. It is found that temperature profile θ decreases with increase in suction parameter whereas it increases with increase in magnetic parameter.

对本文的引用
  1. Guria M., Das B. K., Jana R. N., Imrak C. Erdem, Hydromagnetic flow between two porous disks rotating about non-coincident axes, Acta Mechanica Sinica, 24, 5, 2008. Crossref

  2. Srivastava Neetu, MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks, International Scholarly Research Notices, 2014, 2014. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain