图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际流体力学研究期刊
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN 打印: 2152-5102
ISSN 在线: 2152-5110

国际流体力学研究期刊

DOI: 10.1615/InterJFluidMechRes.v36.i4.30
pages 319-342

Study on Pressure Drop and Center Line Velocity Distribution Across Cosine Shaped Stenotic Model

Moloy Kumar Banerjee
Department of Mechanical Engineering, Future Institute of Engineering and Management Kolkata, India
Ranjan Ganguly
Department of Power Engineering, Jadavpur University Kolkata 700098, India
Amitava Datta
Power Engineering Department, Jadavpur University, Salt Lake Campus, Kolkata 700098, India

ABSTRACT

Arterial stenosis refers to the swelling of the endothelial wall due to plaque deposition and the associated disease is known as atherosclerosis. A stenosed artery reduces the maximum flow of blood through it by putting more resistance to the flow. The pressure of blood in a coronary artery is considered to be one of the important contributors for the formation and progression of atherosclerosis. Therefore, in this paper, the impact of flow Reynolds number(Re) and degree of stenosis (S) on wall pressure near the stenosis in a part of coronary artery is studied considering laminar flow and modeling blood as both Newtonian and non-Newtonian fluid. The two-dimensional steady differential equations for conservation of mass and momentum is solved by finite difference method through stenosed arteris having mild (S = 25 %) to severe (S = 65 %) occlusions and under different regimes of flow Reynolds numbers ranging from 50 to 400. From the study, it is revealed that for all the cases a sharp variation in dimensionless wall pressure is observed near the zone of restriction. The peak centerline velocity in the stenosed region is more sensitive to a change in the degree of occlusion rather than change in the flow Re. From the study it is also revealed that at high Re regime the irreversible pressure loss coefficient (CI) becomes insensitive to Re values and can be approximated to be a function of S only.


Articles with similar content:

Variation of Wall Shear Stress and Flow Characteristics Across Cosine Shaped Stenotic Model with Flow Reynolds Number and Degree of Stenosis
International Journal of Fluid Mechanics Research, Vol.37, 2010, issue 6
Ranjan Ganguly, Moloy Kumar Banerjee, Amitava Datta
Effect of Restriction and Reynolds Number on the Pressure of Blood of a Stenotic Artery
International Journal of Fluid Mechanics Research, Vol.34, 2007, issue 2
Somnath Chakrabarti, Dipak Kumar Mandal
Analysis of Steady and Physiological Pulsatile Flow Characteristics in an Artery with Various Percentages of Restrictions
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 3
Nirmal Kumar Manna, Somnath Chakrabarti, P. Goswami, Dipak Kumar Mandal
Cardiohemodynamics and Efficiency of the Frank-Starling Mechanism in Spontaneously Hypertensive Rats
International Journal of Physiology and Pathophysiology, Vol.4, 2013, issue 1
Mariya O. Kuzmenko, Vadim F. Sagach, Tetyana V Shimanskaya, Nataliya A. Dorofeyeva
Experimental Study of Wall Pressure Fluctuations in a Pipe behind a Stenosis
International Journal of Fluid Mechanics Research, Vol.30, 2003, issue 3
A. O. Borisyuk