图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际流体力学研究期刊
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN 打印: 2152-5102
ISSN 在线: 2152-5110

国际流体力学研究期刊

DOI: 10.1615/InterJFluidMechRes.v25.i1-3.170
pages 202-211

Effect of the Buoyancy Ratio on the Number of Double-Diffusive Cells in a Rectangular Enclosure

Hwataik Han
Department of Mechanics and Design, Kook Min University Seoul, Korea

ABSTRACT

Double diffusive multi-cells are formed in a rectangular enclosure when horizontal temperature and concentration gradients are present in a certain range of parameters. The system parameters are thermal Grashof number, solutal Grashof number, Prandtl number, and Schmidt number for an enclosure with a given aspect ratio. Depending on the ratio of thermal and solutal Grashof numbers flow patterns due to double diffusive natural convection change, as the number of cells change. The flow structure determines the heat and mass transfer characteristics from the vertical surfaces of the cavity. It is the objective of the present study to investigate the effect of the ratio of thermal and solutal buoyant forces on the number of double diffusive cells formed in a vertical rectangular enclosure. An electrochemical copper deposition system is utilized with the vertical electrode maintained at different temperatures. Temperature distribution is measured using a thermocouple probe along the vertical centerline. The concentration distribution of cupric ion in the enclosure is determined by measuring the attenuation of light through the test cell. In well developed cells, concentration is nearly uniform in each cell, and there are large concentration gradients across the interfaces. The temperature distribution shows a stable stratification in each cell and temperature inversion across the cell interfaces. The interfaces are not quite clear in case the cell does not have appreciable size. The number of cells in a cavity is investigated as a function of the buoyancy ratio.


Articles with similar content:

Time Evolution of Double-Diffusive Convection during Solidification of a Binary System
International Journal of Fluid Mechanics Research, Vol.25, 1998, issue 1-3
H. Miyashita, T. Imoto, Tatsuo Nishimura
EXPERIMENTAL STUDY OF THERMALLY STRATIFIED UNSTEADY FLOW BY NMR-CT
International Heat Transfer Conference 8, Vol.2, 1986, issue
Myung Kyoon Chung, Sang-Joon Lee
THERMALLY INDUCED TRANSPORT PHENOMENA IN PARTIALLY SATURATED POROUS MEDIA
International Heat Transfer Conference 5, Vol.7, 1974, issue
F. K. Deaver, N. R. Moore, H. Wolf
TURBULENT FLOW AND HEAT TRANSFER WITH BUOYANCY EFFECT
International Heat Transfer Conference 8, Vol.1, 1986, issue
Fumimaru Ogino
MELTING FRONT EVOLUTION OF PARAFFIN WAX INSIDE METAL FOAMS AT DIFFERENT ACCELERATION LEVELS
International Heat Transfer Conference 16, Vol.14, 2018, issue
Paolo Di Marco, Alessandro Simone Viglione, Federico Celi, Sauro Filippeschi, Mauro Mameli