图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
界面现象 及传热
ESCI

ISSN 打印: 2169-2785
ISSN 在线: 2167-857X

Open Access

界面现象 及传热

DOI: 10.1615/InterfacPhenomHeatTransfer.2019030215
pages 253-268

HALL EFFECTS ON MHD PERISTALTIC FLOW OF JEFFREY FLUID THROUGH POROUS MEDIUM IN A VERTICAL STRATUM

M. Veera Krishna
Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh - 518007, India
K. Bharathi
Department of Mathematics, BIT Institute of Technology, Hindupur, Anantapuramu, Andhra Pradesh, India
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

ABSTRACT

In this paper, we discuss heat transfer on the peristaltic magnetohydrodynamic flow of a Jeffrey fluid through a porous medium in a vertical echelon under the influence of a uniform transverse magnetic field normal to the channel, taking Hall current into account. This study is motivated towards the physical flow of blood in a microcirculatory system by taking account of the particle size effect. Here we consider the Reynolds number to be small enough and wavelength-to-diameter ratio large enough to neglect inertial effects. The nonlinear governing equations for the Jeffrey fluid are solved making use of the perturbation technique. The exact solutions for the velocity, temperature, and the pressure rise per one wavelength are determined analytically. Its behavior is discussed computationally with reference to different physical parameters. Some parameters are the strongest on the trapping bolus phenomenon and the pumping characteristics. The size of the trapping bolus decreases with increasing Hartmann number or permeability parameter and increases with increasing Hall parameter or Jeffrey number.

REFERENCES

  1. Bhatti, M.M. and Lu, D.Q., Analytical Study of the Head-On Collision Process between Hydroelastic Solitary Waves in the Presence of a Uniform Current, Symmetry, vol. 11, no. 3, p. 333, 2019. DOI: 10.3390/sym11030333

  2. Bhatti, M.M., Zeeshan A., Ellahi, R., and Ijaz, N., Heat and Mass Transfer of Two-Phase Flow with Electric Double Layer Effects Induced due to Peristaltic Propulsion in the Presence of Transverse Magnetic Field, J. Mol. Liquids, vol. 230, pp. 237–246, 2017. DOI: 10.1016/j.molliq.2017.01.033

  3. Bhatti, M.M., Ali Abbas, M., and Rashidi, M.M., Entropy Generation in Blood Flow with Heat and Mass Transfer for the Ellis Fluid Model, Heat Transf. Res., vol. 49, no. 8, pp. 747–760, 2018. DOI: 10.1615/HeatTransRes.2018016105

  4. Bhatti, M.M., Zeeshan, A., Ellahi, R., Beg, O.A., and Kadir, A., Effects of Coagulation on the Two-Phase Peristaltic Pumping of Magnetized Prandtl Biofluid through an Endoscopic Annular Geometry Containing a Porous Medium, Chin. J. Phys., vol. 58, pp. 222–234, 2019. DOI: 10.1016/j.cjph.2019.02.004

  5. Ebaid, A., Effects of Magnetic Field and Wall Slip Conditions on the Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel, Phys. Lett. A, vol. 372, no. 24, pp. 4493–4499, 2008. DOI: 10.1016/j.physleta.2008.04.031

  6. El Shehawey, E.F. and Husseny, S.Z.A., Effects of Porous Boundaries on Peristaltic Transport through a Porous Medium, Acta Mechanica, vol. 143, nos. 3-4, pp. 165–177, 2000. DOI: 10.1007/BF01170946

  7. El Shehawey, E.F., Sobh, A.M.F., and Elbarbary, E.M.E., Peristaltic Motion of a Generalized Newtonian Fluid through a Porous Medium, Phys. Soc. Jpn., vol. 69, pp. 401–407, 2000. DOI: 10.1143/JPSJ.69.401

  8. El Shehawey, E.F., Mekheimer K.S., Kaldas, S.F., and Afifi, N.A.S., Peristaltic Transport through a Porous Medium, J. Biomath., vol. 14, no. 1, pp. 1–13, 1999.

  9. Fung, Y.C. and Yih, C.S., Peristaltic Transport, J. Appl. Mech., vol. 33, pp. 669–675, 1968.

  10. Guyton, G.C., Textbook of Medical Physiology, Philadelphia: W.B. Saunders, 1986.

  11. Hayat, T., Ali, N., and Asghar, S., Hall Effects on Peristaltic Flow of a Maxwell Fluid in a Porous Medium, Phys. Lett. A., vol. 363, pp. 397–403, 2007. DOI: 10.1016/j.physleta.2006.10.104

  12. Kothandapani, M. and Srinivas, S., Non-Linear Peristaltic Transport of a Newtonian Fluid in an Inclined Asymmetric Channel through a Porous Medium, Phys. Lett. A, vol. 372, no. 8, pp. 1265–1276, 2008. DOI: 10.1016/j.physleta.2007.09.040

  13. Mekheimer, K.S. and Al-Arabi, T.H., Nonlinear Peristaltic Transport of MHD Flow through a Porous Medium, Int. J. Math. Math. Sci., vol. 26, pp. 1663–1682, 2003. DOI: 10.1155/S0161171203008056

  14. Mekheimer, K.S. and Elmaboud, Y.A., The Influence of Heat Transfer and Magnetic Field on Peristaltic Transport of a Newtonian Fluid in a Vertical Annulus: Application of an Endoscope, Phys. Lett. A, vol. 372, no. 10, pp. 1657–1665, 2008. DOI: 10.1016/j.physleta.2007.10.028

  15. Phan-Thien, N., Understanding Viscoelasticity: An Introduction to Rheology, Berlin-Heidelberg: Springer, 2013.

  16. Rashadi, M.M., Yang, Z., Bhatti, M.M., and Munawwar, A.A., Heat and Mass Transfer Analysis on MHD Blood Flow of Casson Fluid Model due to Peristaltic Wave, Therm. Sci., vol. 22, pp. 2439–2448, 2018. DOI: 10.2298/TSCI160102287R

  17. Reddy, B.S.K., Veera Krishna, M., Rao, K.V.S.N., and Vijaya, R.B., HAM Solutions on MHD Flow of Nano-Fluid through Saturated Porous Medium with Hall Effects, Mater. Today: Proc., vol. 5, pp. 120–131, 2018. DOI: 10.1016/j.matpr.2017.11.062

  18. Santhosh, N. and Radhakrishnamacharya, G., Flow of Jeffrey Fluid through Narrow Tubes, Int. J. Sci. Eng. Res., vol. 4, pp. 468–473, 2013.

  19. Santhosh, N. and Radhakrishnamacharya, G., Jeffrey Fluid Flow through Porous Medium in the Presence of Magnetic Field in Narrow Tubes, Int. J. Eng. Math., vol. 2014, pp. 1–8, 2014. DOI: 10.1155/ 2014/713831

  20. Sara, I.A. and Bhatti, M.M., The Study of Non-Newtonian Nanofluid with Hall and Ion Slip Effects on Peristaltically Induced Motion in a Non-Uniform Channel, RSC Adv., vol. 8, no. 15, pp. 7904–7915, 2018. DOI: 10.1039/c7ra13188g

  21. Shapiro, A.H., Jaffrin, M.Y., and Weinberg, S.L., Peristaltic Pumping with Long Wavelength at Low Reynolds Number, J. Fluid Mech., vol. 37, no. 4, pp. 799–825, 1969. DOI: 10.1017/S0022112069000899

  22. Swarnalathamma, B.V. and Veera Krishna, M., Peristaltic Hemodynamic Flow of Couple Stress Fluid through a Porous Medium under the Influence of Magnetic Field with Slip Effect, AIP Conf. Proc., vol. 1728, p. 020603, 2016. DOI: 10.1063/1.4946654

  23. Vajravelu, K., Sreenadh, S., and Lakshminarayana, P., The Influence of Heat Transfer on Peristaltic Transport of a Jeffrey Fluid in a Vertical Porous Stratum, Commun. Nonlinear Sci. Numer. Simul., vol. 16, pp. 3107–3125, 2011. DOI: 10.1016/j.cnsns.2010.11.001

  24. Veera Krishna, M. and Chamkha, A.J., Hall Effects on Unsteady MHD Flow of Second Grade Fluid through Porous Medium with RampedWall Temperature and Ramped Surface Concentration, Phys. Fluids, vol. 30, p. 053101, 2018. DOI: 10.1063/1.5025542

  25. Veera Krishna, M. and Chamkha, A.J., Hall Effects on MHD Squeezing Flow of a Water based Nano-Fluid between Two Parallel Disks, J. Porous Media, vol. 22, no. 2, pp. 209–223, 2019. DOI: 10.1615/JPorMedia.2018028721

  26. Veera Krishna, M. and Gangadhar Reddy, M., MHD Free Convective Rotating Flow of Visco-Elastic Fluid past an Infinite Vertical Oscillating Porous Plate with Chemical Reaction, IOP Conf. Ser.: Mater. Sci. Eng., vol. 149, p. 012217, 2016. DOI: 10.1088/1757-899X/149/1/012217

  27. Veera Krishna, M. and Gangadhar Reddy, M., MHD Free Convective Boundary Layer Flow through Porous medium Past a Moving Vertical Plate with Heat Source and Chemical Reaction, Mater. Today: Proc., vol. 5, pp. 91–98, 2018. DOI: 10.1016/j.matpr.2017.11.058

  28. Veera Krishna, M. and Jyothi, K., Hall Effects on MHD Rotating Flow of a Visco-Elastic Fluid through a Porous Medium over an Infinite Oscillating Porous Plate with Heat Source and Chemical Reaction, Mater. Today: Proc., vol. 5, pp. 367–380, 2018. DOI: 10.1016/j.matpr.2017.11.094

  29. Veera Krishna, M. and Subba Reddy, G., Unsteady MHD Convective Flow of Second Grade Fluid through a Porous Medium in a Rotating Parallel Plate Channel with Temperature Dependent Source, IOP Conf. Ser.: Mater. Sci. Eng., vol. 149, p. 012216, 2016. DOI: 10.1088/1757-899X/149/1/012216

  30. Veera Krishna, M. and Subba Reddy, G., MHD Forced Convective Flow of Non-Newtonian Fluid through Stumpy Permeable Porous Medium, Mater. Today: Proc., vol. 5, pp. 175–183, 2018. DOI: 10.1016/j.matpr.2017.11.069

  31. Veera Krishna, M. and Swarnalathamma, B.V., Convective Heat and Mass Transfer on MHD Peristaltic Flow of Williamson Fluid with the Effect of Inclined Magnetic Field, AIP Conf. Proc., vol. 1728, p. 020461, 2016. DOI: 10.1063/1.4946512

  32. Veera Krishna, M., Swarnalathamma, B.V., and Prakash, J., Heat and Mass Transfer on Unsteady MHD Oscillatory Flow of Blood through Porous Arteriole, in Applied Fluid Dynamics, Lecture Notes in Mechanical Engineering, M.K. Singh, B.S. Kushva, G.S. Seth, and J. Prakash, Eds., Berlin: Springer, vol. 22, pp. 207–224. DOI: 10.1007/978-981-10-5329-0 14

  33. Veera Krishna, M., Subba Reddy, G., and Chamkha, A.J., Hall Effects on Unsteady MHD Oscillatory Free Convective Flow of Second Grade Fluid through Porous Medium between Two Vertical Plates, Phys. Fluids, vol. 30, p. 023106, 2018b. DOI: 10.1063/1.5010863

  34. Veera Krishna, M., Jyothi, K., and Chamkha, A.J., Heat and Mass Transfer on Unsteady, Magnetohydrodynamic, Oscillatory Flow of Second-Grade Fluid through a Porous Medium between Two Vertical Plates, under the Influence of Fluctuating Heat Source/Sink, and Chemical Reaction, Int. J. Fluid Mech. Res. DOI: 10.1615/InterJFluid- MechRes.2018024591

  35. Veera Krishna, M., Gangadhara Reddy, M., and Chamkha, A.J., Heat and Mass Transfer on MHD Free Convective Flow over an Infinite Non-Conducting Vertical Flat Porous Plate, Int. J. Fluid Mech. Res., vol. 46, no. 1, pp. 1–25, 2019a. DOI: 10.1615/InterJFluidMechRes. 2018025004

  36. Veera Krishna, M., Gangadhara Reddy, M., and Chamkha, A.J., Heat and Mass Transfer on MHD Rotating Flow of Second Grade Fluid past an Infinite Vertical Plate Embedded in Uniform Porous Medium with Hall Effects, in Applied Mathematics and Scientific Computing, Trends in Mathematics, pp. 417–427, 2019b. DOI: 10.1007/978-3-030-01123-9 41


Articles with similar content:

THERMAL RADIATION EFFECT ON INCLINED ARTERIAL BLOOD FLOW THROUGH A NON-DARCIAN POROUS MEDIUM WITH MAGNETIC FIELD
First Thermal and Fluids Engineering Summer Conference, Vol.17, 2015, issue
Madhu Sharma, R. K. Gaur, Bhupendra K. Sharma
JEFFREY FLUID IMPACT ON MHD FREE CONVECTIVE FLOW PAST A VERTICALLY INCLINED PLATE WITH TRANSFER EFFECTS: EFGM SOLUTIONS
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 3
Rallabandi Srinivasa Raju, M. Anil Kumar, Rama Subba Reddy Gorla, Gurejala Jithender Reddy
THE ONSET OF MAGNETOELECTROCONVECTION IN A DIELECTRIC FLUID SATURATED POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 2
B. Rushi Kumar, P. A. Dinesh, B. V. Rangaraju, M. S. Gayathri
Nonlinear Peristaltic Transport through a Porous Medium in an Inclined Planar Channel
Journal of Porous Media, Vol.6, 2003, issue 3
Kh. S. Mekheimer
Free Convective Flow of Magneto-Polar Fluid Past a Porous Vertical Wall Embedded in Non-Homogeneous Porous Medium in Slip Flow Regime
International Journal of Fluid Mechanics Research, Vol.36, 2009, issue 4
Atul Kumar Singh