图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
神经生物学评论综述™

ISSN 打印: 0892-0915
ISSN 在线: 2375-0014

Archives: Volume 10, 1996 to Volume 20, 2008

神经生物学评论综述™

DOI: 10.1615/CritRevNeurobiol.v11.i4.40
pages 323-342

The Primate Substantia Nigra and VTA: Integrative Circuitry and Function

Suzanne N. Haber
Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, N.Y. 14642
Julie L. Fudge
Department of Neurobiology and Anatomy, and Department of Psychiatry, University of Rochester School of Medicine, Rochester, N.Y. 14642

ABSTRACT

A substantial amount of research has focused on the midbrain dopamine system and its role in mediating a wide range of behaviors. In diseases in which dopamine function is compromised, patients exhibit a constellation of symptoms suggesting that the dopamine system plays an important role in the integration of several functions. We have shown that there are subgroups of dopamine neurons that receive information from limbic and association areas and project widely throughout cortex and striatum, including motor areas. A dorsal tier of dopamine neurons receive input from the ventral (limbic) striatum and the amygdala and project widely throughout cortex. A more ventrally located group of dopamine cells receives input from both the limbic and association areas of striatum and project widely throughout the striatum including the sensorimotor regions. Through these projections the dopamine system can effect a wide range of behaviors. For the most part, structures of the basal ganglia are thought to be organized in parallel pathways. However, the behaviors affected by basal ganglia disorders can be in part explained by the integrative nature of the dopamine system and its links to motor, limbic, and association areas of the striatum and cortex.