图书馆订阅: Guest
ICHMT主页 当年 旧刊 执委 International Centre for Heat and Mass Transfer

Numerical simulation of the fuel-oil cooling in the sunken Prestige tanker

Francesc Xavier Grau
Department of Mechanical Engineering, University Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia, Spain

I. Cuesta
Department of Mechanical Engineering, University Rovira i Virgili, Avinguda dels Països Catalans 26, 43007, Tarragona, Spain

A. Fabregat
Department of Mechanical Engineering, University Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia, Spain

Abstract

This paper presents and discusses the predictions of the cooling rates of the fuel-oil contained in the tanks of the sunken Prestige tanker. These predictions were obtained through the numerical simulation of the time-evolution of the natural convection flow in the tanks and through the solution of the simplified macroscopic thermal energy balances. The physical model of the problem consists in a two-dimensional cross section of the tanker with two tanks. Initially the fuel-oil is considered to be at rest and at constant temperature (Ti=50 °C) and the temperature of the external walls is set constant through the cooling process (Tw=2.6°C). The conventional Boussinesq approximation is adopted. The strong viscosity dependence on temperature of the fuel-oil (μ=500 Pa·s at T=3.1°C μ=0.85 Pa·s at T=50°C) is considered as well. The initial high Rayleigh (Ra≈1013) and Prandtl (Pr≈108) numbers involved and the overall duration of the cooling process, which is of order of months, impose severe computational requirements for the numerical simulation of the complete time evolution in terms of grid sizes, time-step and total integration time. The numerical simulation shows that during the initial cooling period (t<45 days) the flow is highly unsteady (1010≥Ra≥1013) and it is mainly governed by the interaction of the vertical boundary layers developed near the vertical walls of the tanks and the unstable stratification imposed near the top horizontal walls. The flow has a broadband of length scales that range from the thin thermal boundary layers of several millimeters of thickness to the large-scale recirculations of order of the dimensions of the tanks. The macroscopic thermal energy balances underpredict by about 7°C the averaged temperatures of the numerical simulation when the conventional correlations of natural convection flows for high Prandtl number fluids are used to compute the convective heat fluxes through the walls. These temperature differences are reduced down to 3°C using the heat transfer coefficients predicted by the numerical simulation.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH