图书馆订阅: Guest
Proceedings of CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer.
July, 1-6, 2012, Bath, England

DOI: 10.1615/ICHMT.2012.CHT-12


ISBN: 978-1-56700-303-1

ISSN: 2578-5486

NUMERICAL STUDY OF COUPLED MOLECULAR GAS RADIATION AND NATURAL CONVECTION IN A DIFFERENTIALLY HEATED CUBICAL CAVITY

pages 1183-1199
DOI: 10.1615/ICHMT.2012.CHT-12.720
Get accessGet access

摘要

The coupling between natural convection and gas and wall radiation is studied numerically in a differentially heated cubical cavity filled with an air/CO2/H2O mixture. In order to solve coupled flow, heat transfer and radiation equations, we develop a 3D radiative transfer model based on the deterministic ray tracing method, coupled with a pseudo-spectral Chebyshev method for natural convection under Boussinesq approximation. Absorption Distribution Function (ADF) model is used to describe gas radiative properties. Coupled simulations are performed at Ra =105, 106 and 3 × 107, considering wall and/or gas radiation. Steady solutions were obtained except at the highest Rayleigh number in the case of radiating walls. Results show a strong influence of radiative transfer on temperature and velocity fields. The global homogenization of the temperature field induced by radiation leads to a decrease of the thermal stratification parameter. Two different mechanisms leading to this behaviour, involving either wall/wall or gas radiative exchanges, are identified. In addition, we observe a thickening of the vertical boundary layers and an increase of the global circulation in the cavity. The influence of the Rayleigh number and 3D effects are also discussed.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain