图书馆订阅: Guest
ICHMT主页 当年 旧刊 执委 International Centre for Heat and Mass Transfer

Parameter-free modelling of a turbulent differentially heated cavity with Rayleigh number up to 1011

DOI: 10.1615/ICHMT.2009.TurbulHeatMassTransf.1160
page 12

F. Xavier Trias
Heat and Mass Transfer Technological Center (CTTC) Universitat Politecnica de Catalunya - BarcelonaTech (UPC) Colom 11, 08222 Terrassa, Barcelona, Spain; and Institute of Mathematics and Computing Science, University of Groningen, The Netherland

M. Soria
Centre Tecnològic de Transferència de Calor (CTTC) ETSEIAT, c/ Colom 11, 08222 Terrassa, Spain

Andrey Gorobets
Heat and Mass Transfer Technological Center, Technical University of Catalonia ETSEIAT, C/Colom 11, 08222 Terrassa, Spain; Keldysh Institute of Applied Mathematics, 4A, Miusskaya Sq., Moscow 125047, Russia

R.W.C.P. Verstappen
Institute of Mathematics and Computing Science, University of Groningen P.O. Box 407, 9700 AK Groningen, The Netherlands

Abstract

Since direct numerical simulations of natural convection in a differentially heated cavity cannot be performed at high Rayleigh numbers, a dynamically less complex mathematical formulation is sought. In the quest for such a formulation, we consider regularizations (smooth approximations) of the nonlinearity. The regularization method basically alters the convective terms to reduce the production of small scales of motion by means of vortex stretching. In doing so, we propose to preserve the symmetry and conservation properties of the convective terms exactly. This requirement yielded a novel class of regularizations that restrain the convective production of smaller and smaller scales of motion by means of vortex stretching in an unconditional stable manner, meaning that the velocity cannot blow up in the energy-norm (in 2D also: enstrophy-norm). The numerical algorithm used to solve the governing equations preserves the symmetry and conservation properties too. In the present work we propose to determine the filter length dynamically with the requirement that the vortex stretching must be stopped at the scale set by the grid. Finally, the proposed parameter-free regularization model is successfully tested for a turbulent natural convection flow in an air-filled differentially heated cavity of aspect ratio 4 with Rayleigh number up to 1011.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH