图书馆订阅: Guest
传热年鉴网络版(1-23卷)
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

HEAT TRANSFER IN HETEROGENEOUS PROPELLANT COMBUSTION SYSTEMS

pages 287-330
DOI: 10.1615/AnnualRevHeatTransfer.v4.80
Get accessGet access

摘要

Heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellents, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain