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A Hermite spectral discretization method to approximate the solution of a Fokker-Planck optimal control problem in
an unbounded domain is presented. It is proved that the solution of the corresponding discretized optimality system is
spectrally accurate and the numerical scheme preserves the required conservativity property of the forward solution.
The theoretical results are verified with numerical experiments.

KEY WORDS: Fokker-Planck equation, optimal control theory, Hermite spectral discretization

1. INTRODUCTION

The investigation of stochastic processes is a very active research field with many applications in technology, science,
and finance. In particular, the possibility to control sequences of events subject to randomness is desirable for real
applications. In this paper, we consider continuous-time stochastic processes described by the following multidimen-
sional model: {

dXt = b(Xt, t;u) dt + σ(Xt, t) dWt

Xt0 = X0,
(1)

where the state variableXt ∈ Rd is subject to deterministic infinitesimal increments driven by the vector-valued drift
functionb(x, t;u) ∈ Rd, and to random increments proportional to a multidimensional Wiener processdWt ∈ Rm,
with stochastically independent components. The dispersion matrixσ(x, t) ∈ Rd×m is full rank.

This is the so-called Itô stochastic differential equation (SDE) [7], where we model the action of a control function
u with the purpose to drive the random process to attain desired objectives. In deterministic dynamics, the optimal
control is achieved by finding the control lawu that minimizes a given objective given by a cost functionalJ(X, u)
with the constraint given by a deterministic dynamical model. In the stochastic case, the state evolutionXt is random
so that a direct insertion of a stochastic process into a deterministic cost functional will result in a random variable.
To circumvent this difficulty and determine a robust control that does not depend on the single realizations of the
process, an alternative approach was proposed in [1, 2], based on the fact that the state of a stochastic process can be
completely characterized by the shape of its probability density function (PDF). The evolution of the PDF associated
to the stochastic processXt is modeled by the following Fokker-Planck (FP) model:

∂tf(x, t)− 1
2

d∑

i,j=1

∂2
xixj

(aij(x, t) f(x, t)) +
d∑

i=1

∂xi (bi(x, t; u) f(x, t)) = 0, (2)

f(x, t0) = ρ(x), (3)
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wheref denotes the PDF function, and the diffusion coefficient is given by the positive-definite symmetric matrix
a = σσ>/2, with elements

aij =
1
2

m∑

k=1

σik σjk.

The initial PDF distributionρ must be non-negative and normalized,
∫
Ω

ρ(x)dx = 1. The FP model (2) is a parabolic
problem on a multidimensional space domain, where the dimension corresponds to the number of components of the
stochastic process; see also [19, 20]. Moreover, the problem (2)–(3) differs from a classical parabolic problem because
of the additional requirements of positivity of solution and conservativeness. In fact, the FP equation with the givenρ

guarantees the following:

f(x, t) ≥ 0,
∫

Ω

f(x, t)dx = 1, for all t ≥ t0.

The latter property results from the fact that we can write the FP equation in flux form, and vanishing fluxes on the
boundary or at infinity are assumed. Notice that, in most cases, the FP problem is defined in an unbounded set inRd,
because no bounds on the values of the stateXt are assumed. In this case, existence and uniqueness to the FP problem
often rely on the concept of uniform parabolicity [8]; see, in particular, [2–4] and [14] and the references therein.

Our purpose is to investigate the discretization of the optimality system resulting from the optimal control strategy
of [2] with a FP model in an unbounded domain. In this case, finite-difference or finite-element methods cannot be
applied. By employing a suitable set of basis functions, spectral methods allow to treat unbounded domains. Since in
our FP model, the solutions at infinity decay exponentially, we consider Hermite functions as basis functions, which
are Hermite polynomials multiplied by a Gaussian. With this choice, we also take advantage of reducing the optimality
system of partial differential equations (PDEs) into a system of ordinary differential equations (ODEs) with resulting
sparse-band matrices of coefficients; see also [9, 10].

This paper is organized as follows. In Section 2, we discuss the FP equation in an unbounded domain. In Section 3,
a FP control problem is formulated and the corresponding optimality system in an unbounded domain consisting of
state, adjoint, and optimality condition equations is presented. The required properties and equipment for Hermite
approximation are discussed in the Appendix. In Section 4, the Hermite spectral discretization of the state and adjoint
equations is investigated. As a result of this section, the systems of PDEs, describing the state and the adjoint equations,
are transformed to systems of ODEs. The matrix representation of these systems are presented, which provides an
appropriate means to solve the system and to analyze the discretized scheme. In Section 5, the discretized scheme is
analyzed, and the accuracy of the Hermite-spectral method is proved by showing that the error decreases spectrally as
the number of expansion terms increases. We also investigate the conservativity of the scheme. The accuracy of the
discretization method is investigated in Section 6 with numerical experiments. Section 7 presents a conclusion of this
work.

2. THE FOKKER-PLANCK EQUATION IN AN UNBOUNDED DOMAIN

Denote withf(x, t) the probability density to find the processXt atx = (x1, . . . , xd) ∈ Ω = Rd at timet. Further, let
f̂(x, t; y, s) denote the transition density probability distribution function for the stochastic Markov process to move
from y ∈ Ω at times to x ∈ Ω at timet ≥ s, that is related to the probability of the processX(t) ∈ (x, x + dx)
conditioned toX(s) = y. We have

f̂(x, t; y, s)dx = ℘{X(t) ∈ (x, x + dx)|X(s) = y},

where℘ is a measure on probability space. Bothf(x, t) andf̂(x, t; y, s) are nonnegative functions and the following
holds:

f̂(x, t; y, s) ≥ 0,

∫

Ω

f̂(x, t; y, s) dx = 1 for all t ≥ s. (4)

That is, the transition probability density should be non-negative for all values of the arguments and be normalized to
one after integration over the destination state.
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If ρ(y, s) is the given initial density probability of the process at times, then we have that the probability density
of the process at timet > s is given by the following:

f(x, t) =
∫

Ω

f̂(x, t; y, s)ρ(y, s) dy. (5)

Also ρ must be non-negative and normalized
∫
Ω

ρ(y, s)dy = 1.
In our discussion, the Fokker-Planck equation is defined onQ = Ω × (0, T ), and we consider an unbounded

domain,Ω = Rd. We assume that the initial distributionρ is given (we drops in the initial distribution) and hence
the Fokker-Planck equation modeling the evolution of the probability densityf satisfying (4) at all times is given by
(2)–(3).

Next, we introduce some assumptions on the FP model that guarantee its solvability. We have the following:

Assumption 1.

1. The coefficient functionaij is bounded and satisfies the following uniform ellipticity condition for a constant
θ > 0:

d∑

ij=1

aij(x, t)ξiξj ≥ θ |ξ|2, ∀ ξ ∈ Rd, (x, t) ∈ Q.

2. The coefficient functionsbi and∂xi
aij , i, j = 1, . . . , d, satisfy the following:

bi, ∂xiaij ∈ Lq(0, T ; Lp(Ω))

wherep andq are such that2 < p, q ≤ ∞, andd/2p + 1/q < 1/2.

3. The functions∂xibi, i = 1, . . . , d, satisfy

∂xibi ∈ Lq(0, T ;Lp(Ω))

wherep andq are such that1 < p, q ≤ ∞, andd/2p + 1/q < 1.

These assumptions were introduced in [3] to prove existence and uniqueness of non-negative solutions of parabolic
problems. In [2], the results of [3] have been specialized to prove existence, uniqueness, and positivity of solutions to
the forward FP problem (2)–(3) in a bounded domain. We have the following:

Theorem 1. Suppose thatbi andaij in (2) satisfy the Assumption 1, and take the initial conditionρ ∈ H1
0 (Ω) and

homogeneous boundary conditions onΣ = ∂Ω × (0, T ). Then there exists a unique weak solutionf to (2)–(3).
Further, the solutionf has the following additional property:

If 0 ≤ ρ ≤ m a.e. inΩ, then
0 ≤ f(x, t) ≤ m(1 + C k), in Q

wherek = 1/2
∑d

i=1 ‖
∑d

j=1 ∂xj aij‖p,q + ‖∑d
i=1 ∂xibi‖p,q andC depends only onT , Ω, and the structure of

the FP operator.

We use this theorem to discuss existence, uniqueness, and positivity of the solution to the FP problem (2)–(3) in
an unbounded domainΩ = Rd. To this end, we define some special boundary value problems, as is proposed in [3].

Let Ωk = {x; |x| < k} andQk = Ωk × (0, T ). For each integerk ≥ 3, let ζk = ζk(x) denote aC∞0 (Rn)
function such thatζk = 1 for |x| ≤ k − 2, ζk = 0 for |x| ≥ k − 1, 0 ≥ ζk ≤ 1 and|∂xζk| is bounded independent
of k. According to Theorem 1, for eachk there exists a unique and bounded weak solutionfk to the boundary value
problem

∂tf
k − 1

2

d∑

i,j=1

∂2
xixj

(
aij fk

)
+

d∑

i=1

∂xi

(
bi(u) fk

)
= 0 in Qk,

fk(x, 0) = ζk(x)ρ(x) in Ωk,

(6)

with homogeneous boundary conditions. Extend the domain of definition offk by settingfk = 0 for |x| ≥ k.
In [3] one can find the arguments which prove the following theorem.
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Theorem 2. If bi andaij in (2) satisfy the Assumption 1, the functionfk in (6) is bounded,ρ ∈ H1(Ω), andρ ≥ 0
almost everywhere inΩ, then the problem (2)–(3) possesses a unique and non-negative weak solution.

Although the results presented in [3] and later generalized in [12] prove the existence of a unique non-negative
solution for our problem belonging to the spaceL∞((0, T ); L2

loc(Ω))∩L2((0, T ); H1
loc(Ω)), the arguments provided

in [13] show that this solution may have higher regularity. In fact, we have that forr > 0, f ∈ Hr+2,r/2+1(Q) as long
asρ ∈ Hr+2(Ω) and the coefficientsaij andbi belong toHr,r/2(Q).

Notice that in our case and in many applications the FP parameter functions are smooth and Assumption 1 and
the assumptions in [13] are immediately satisfied. For additional results on the Fokker-Planck equation with irregular
coefficients see [14].

3. A FOKKER-PLANCK OPTIMAL CONTROL PROBLEM

The control strategy proposed in [2] requires to minimize an objective under the constraint given by the FP equation.
The implementation of this strategy is an instance of the class of model predictive control (MPC) schemes [11], which
is widely used in engineering applications to design closed-loop algorithms. To illustrate this method, let(0, T ) be the
time interval where the process is considered. In [2], the time interval is subdivided in time windows of size∆t and on
each of these windows an open-loop FP optimal control problem is solved that uses the solution PDF of the previous
time window as initial condition, and the target is specified at the end of each window. This procedure is repeated by
receding the time horizon until the last time window is reached. In particular, the approach in [2] considers vector-
valued constant control functions on each time window such that along the interval(0, T ) a piecewise constant control
is obtained. For the reason of clarity in error analysis, we focus on one time window, that we identify with(0, T ).

Now, within this framework, we formulate the problem to determine a controlu ∈ R` such that starting with
an initial distributionρ the process evolves towards a desired target probability densityfd(x, t) at timet = T . This
objective can be formulated by the following tracking functional:

J(f, u) :=
1
2
‖f(·, T )− fd(·, T )‖2wα

+
ν

2
|u|2, (7)

where|u|2 = u2
1 + . . . + u2

` , andν > 0 is a constant. With‖ · ‖2wα
we denote the following:

‖v‖2wα
=

∫

Ω

v(x)2wα(x)dx

wherewα(x) = exp(α2x2) is a weight function, andα > 0 must be appropriately chosen.
The optimal control problem to findu that minimizes the objectiveJ subject to the constraint given by the FP

equation is formulated by the following:

min
1
2
‖f(·, T )− fd(·, T )‖2wα

+
ν

2
|u|2 (8)

∂tf(x, t)− 1
2

d∑

i,j=1

∂2
xixj

(aij(x, t) f(x, t)) +
d∑

i=1

∂xi (bi(x, t; u) f(x, t)) = 0 (9)

f(x, 0) = ρ(x). (10)

Notice that for a given control functionu, Theorem 2 states that the solution of the FP model (9)–(10) is uniquely
determined. We denote this dependence byf = f(u) and one can prove that the mappingu → f(u) is twice
differentiable [16]. Therefore, we can introduce the so-called reduced cost functionalĴ given by

Ĵ(u) = J(f(u), u). (11)

Correspondingly, a local minimumu∗ of Ĵ is characterized bŷJ ′(u∗; δu) = 0 for all δu ∈ R`.
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To characterize the solution to our optimization problem, we consider the Lagrange formalism and formulate the
first-order optimality conditions. Consider the Lagrange functional

L(f, u, p) = J(f, u)

+
∫

Ω

∫ T

0


∂tf − 1

2

d∑

i,j=1

∂2
xixj

(aij f) +
d∑

i=1

∂xi (bi(u) f)


 pwα dx dt,

wherep = p(x, t) represents the Lagrange multiplier. The first-order optimality conditions for our FP optimal control
problem are formally derived by equating to zero the Fréchet derivatives of the Lagrange function with respect to the
set of variables(f, u, p); see, e.g., [5, 16]. The optimality conditions result in the following optimality system. We
have

∂tf − 1
2

d∑

i,j=1

∂2
xixj

(aij f) +
d∑

i=1

∂xi
(bi(u) f) = 0 in Q, (state equation)

f(x, 0) = ρ(x) in Ω, (initial condition)

−∂t(pwα)− 1
2

d∑

i,j=1

aij ∂2
xixj

(pwα)−
d∑

i=1

bi(u) ∂xi
(pwα) = 0 in Q, (adjoint equation)

−p(x, T ) = f(x, T )− fd(x, T ) in Ω, (terminal condition)

ν ul +

〈
d∑

i=1

∂xi

(
∂bi

∂ul
f

)
, p

〉

wα

= 0 in Q, l = 1, . . . , ` (optimality equations)

(12)

where we use the following inner product:

〈φ,ψ〉wα
=

∫ T

0

∫

Ω

φ(x, t)ψ(x, t) wα(x) dx dt.

Notice that the state variable evolves forward in time and the adjoint variable evolves backwards in time. We
remark that the FP equation is a particular instance of the forward Kolmogorov equation and the adjoint equation
resembles the backward Kolmogorov equation.

It should appear [1, 2] clearly that thelth component of the reduced gradient∇Ĵ is given by

(∇Ĵ)l = ν ul +

〈
d∑

i=1

∂xi

(
∂bi

∂ul
f

)
, p

〉

wα

, l = 1, . . . , `, (13)

wherep = p(u) is the solution of the adjoint equation for the givenf(u).
Notice that the optimization problem given by (8)–(10) represents a bilinear control problem where the dependence

of the statef on the controlu is nonlinear and the corresponding optimization problem is nonconvex. However,
standard arguments [1, 2, 5, 16, 21] allow to prove existence of optimal solutions of the open-loop control in(0, T ).

4. HERMITE DISCRETIZATION OF THE FP OPTIMALITY SYSTEM

We consider a FP control problem corresponding to a representative stochastic process given by the Ornstein-Uhlenbeck
process, and for simplicity we focus on a one-dimensional setting,d = 1, in which the functionb is linear anda is
constant. We haveb(x, t;u) = γx + u anda(x, t) = 2c, whereγ < 0, u andc > 0 are constants. In this case, the
optimality system is given by
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∂tf(x, t)− c∂xxf(x, t) + ∂x ((γx + u)f(x, t)) = 0, in Q,

f(x, 0) = ρ(x), in Ω,

−∂t(p(x, t)wα(x))− c∂xx(p(x, t)wα(x))− (γx + u)∂x(p(x, t)wα(x)) = 0, in Q,

−p(x, T ) = f(x, T )− fd(x, T ), in Ω,

νu + 〈∂xf(x, t), p(x, t)〉wα
= 0, in Q.

For the analysis of the discretization of the optimality system with Hermite functions, we need to discuss some
properties of the Hermite approximation space. For this purpose, we refer to the Appendix.

The state and adjoint variables are approximated in the space of Hermite functions as follows:

f(x, t) =
∞∑

n=0

f̂n(t)H̃n(x), p(x, t) =
∞∑

n=0

p̂n(t)H̃n(x).

For the adjoint equation, we note that the approximation

p(x, t) =
∞∑

n=0

p̂n(t)H̃n(x)

is equivalent to

p(x, t)wα(x) =
∞∑

n=0

1√
2nn!

p̂n(t)Hn(αx).

The initial dataf(x, 0) = ρ are also represented in the Hermite functions space byρ(x) =
∑∞

n=0 f̂0
nH̃n(x), where

f̂0
n =

α√
π

∫

R
ρ(x)H̃n(x)wα(x)dx, n ≥ 0.

Sincep(x, T ) = fd(x, T ) − f(x, T ), after calculating the numerical solution of the forward equation, the terminal
condition for the adjoint variablep can be approximated byp(x, T ) =

∑∞
n=0 p̂T,nH̃n(x), where

p̂T,n =
α√
π

∫

R
fd(x, T )H̃n(x)wα(x)dx− f̂n, n ≥ 0.

Introducing the Hermite expansions forf andp into the state and adjoint equations, forn ≥ 0 we have

d

dt
f̂n(t) = nγf̂n(t) + αu

√
2nf̂n−1(t) + (γ + 2α2c)

√
n(n− 1)f̂n−2(t), (14)

with f̂−1 = 0, f̂−2 = 0, and

− d

dt
p̂n(t) = nγp̂n(t) + αu

√
2(n + 1)p̂n+1(t) + (γ + 2α2c)

√
(n + 2)(n + 1)p̂n+2(t). (15)

The Eqs. (14)–(15) represent two infinite systems of ODEs. These systems are truncated by considering the ap-
proximations

[f̂∆,0(t), f̂∆,1(t), · · · , f̂∆,N (t)] ≈ [f̂0(t), f̂1(t), · · · ],
and

[p̂∆,0(t), p̂∆,1(t), · · · , p̂∆,N (t)] ≈ [p̂0(t), p̂1(t), · · · ].
Therefore, the systems of ODEs which we solve are as follows:

d

dt
f̂∆,n(t) = nγf̂∆,n(t) + αu

√
2nf̂∆,n−1(t) + (γ + 2α2c)

√
n(n− 1)f̂∆,n−2(t),

f̂∆,n(0) = ρ̂n,
(16)
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and

− d

dt
p̂∆,n(t) = nγp̂∆,n(t) + αu

√
2(n + 1)p̂∆,n+1(t) + (γ + 2α2c)

√
(n + 2)(n + 1)p̂∆,n+2(t),

p̂∆,n(T ) = p̂T,n,
(17)

for 0 ≤ n ≤ N, 0 ≤ t ≤ T , with f̂∆,i = 0 andp̂∆,N−i = 0, i = −1,−2. This corresponds to a Galerkin projection
of f(·, t) andp(·, t) onto the Hermite approximation space

VN = span{H̃n(x), 0 ≤ n ≤ N}.

Definingτ = T − t andq̂n(t) = p̂n(τ), the last equation is equivalent to

d

dt
q̂∆,n(t) = nγq̂∆,n(t) + αu

√
2(n + 1)q̂∆,n+1(t) + (γ + 2α2c)

√
(n + 2)(n + 1)q̂∆,n+2(t),

q̂∆,n(0) = p̂T k,n.
(18)

The systems (16) and (18) can be written in the following matrix form:

df̂∆

dt
= Mf f̂∆, (19)

and
dq̂∆

dt
= Mq q̂∆, (20)

where
f̂∆ = [f̂∆,0(t), f̂∆,1(t), · · · , f̂∆,N (t)]T ,

q̂∆ = [q̂∆,0(t), q̂∆,1(t), · · · , q̂∆,N (t)]T ,

andMf andMq are two(N + 1)× (N + 1) three-diagonal matrices with the elements

(Mf )ij =





nγ, i = j,

αu
√

2n, i− j = 1,

(γ + 2α2c)
√

n(n− 1), i− j = 2,

0, otherwise,

1 ≤ i, j ≤ N + 1,

(Mq)ij =





nγ, j = i,

αu
√

2(n + 1), j − i = 1,

(γ + 2α2c)
√

(n + 2)(n + 1), j − i = 2,

0, otherwise,

1 ≤ i, j ≤ N + 1,

wheren = i− 1. Notice that the first row inMf and also the first column inMq are zero.
Once we have calculated̂f∆ andq̂∆ by

f̂∆(t) = exp(Mf t) f̂0
∆, and q̂∆(t) = exp(Mqt) q̂0

∆,

the optimality variableu can be computed. Representing the approximated solutions by

f∆(x, t) =
N∑

n=0

f̂∆,n(t)H̃n(x), and p∆(x, t) =
N∑

n=0

p̂∆,n(t)H̃n(x),

we have
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∫

R
(∂xf∆)p∆wαdx =

∫

R

(
N∑

n=0

f̂∆,n
d

dx
H̃n(x)

)(
N∑

n=0

p̂∆,nH̃n(x)

)
wαdx

= −α

∫

R

(
N∑

n=0

√
2(n + 1)f̂∆,nH̃n+1(x)

)(
N∑

n=0

p̂∆,nH̃n(x)

)
wαdx

= −α

N∑
n=0

N∑

k=0

√
2(n + 1)f̂∆,np̂∆,k

∫

R
H̃n+1(x)H̃k(x)wαdx

= −α

N−1∑
n=0

√
2(n + 1)f̂∆,np̂∆,n+1

√
π

α

= −
N−1∑
n=0

√
2π(n + 1)f̂∆,np̂∆,n+1.

Thenνu + 〈∂xf(x, t), p(x, t)〉wα
= 0 gives the following:

u∆ = − 1
ν
〈∂xf∆, p∆〉wα

= − 1
ν

∫ T

0

∫

R
(∂xf∆)p∆wαdx dt

=
1
ν

N−1∑
n=0

√
2π(n + 1)

∫ T

0

f̂∆,np̂∆,n+1 dt.

5. ERROR ANALYSIS AND CONSERVATIVENESS OF THE HERMITE SPECTRAL DISCRETIZATION

We recall that substituting the Hermite expansion into the FP control system results in two infinite systems of linear
ODEs. Corresponding to each system, there is a matrixM∞, which is lower triangular for the state equation and upper
triangular for the adjoint equation. To have a practical scheme, we have to truncate these matrices, or equivalently,
consider some truncated systems of ODEs, which is a source of error in our discretization scheme. In the following,
we investigate the influence of this error on the accuracy of our approximation method. Let‖.‖2 be the Euclidean
norm inRN+1.

Lemma 1. AssumingN is sufficiently large so that there is no error in the spectral representation of the initial data,
andf(·, t), fd(·, T ) ∈ VN for anyt ∈ [0, T ], then

‖f̂N − f̂∆‖2 = 0, and ‖p̂N − p̂∆‖2 = 0.

That is, there will be no error for the truncation of the infinite ODE systems.

Proof. For the forward case, no truncation error appears in calculating the Hermite coefficientsf̂n by solving the
finite ODE system (19). This is because of the fact that the system (14) is uncoupled in the sense that form > n the
value off̂n is independent of the value of̂fm. That is,PNf(·, t) = f∆(·, t) for everyt ∈ [0, T ].

The backward case can be analyzed following the procedure proposed in [6]. ConsiderM∞ as the representing
matrix for the ODE system transformed of the adjoint equation, andM the corresponding truncated matrix. The matrix
M is obtained fromM∞ by removing all rows and columns with index larger thanN + 1. We can write

q̂ = eM∞tq̂0 =




∞∑

j=0

tjM j
∞

j!


 q̂0 =

∞∑

j=0

tj

j!
(M j

∞q̂0).

That is, forn ≥ 1 we have

q̂n−1 =
∞∑

j=0

tj

j!
(M j

∞q̂0)n =
∞∑

j=0

tj

j!
bj
n,
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in which bj
n = (M j

∞q̂0)n. Since we have assumed thatf(·, t), fd(·, T ) ∈ VN , we have(q̂0)n = 0 for n > N + 1.
Noting thatM is an upper triangular matrix, it follows that(M∞q̂0)n = 0 for n > N + 1. Therefore, forj ≥ 1,

bj
n =

N+1∑

k=1

(M j
∞)nk(q̂0)k =

N+1∑

k=1

(M∞)nk(M j−1
∞ q̂0)k =

N+1∑

k=1

(M∞)nkbj−1
k .

Similarly f̂∆,n−1 =
∑∞

j=0(t
j/j!)bj

∆,n, with

bj
∆,n = (M j f̂0

∆)n =





∑N+1
k=1 (M)nkbj−1

∆,k , j ≥ 1, n ≤ N + 1,

(f̂0
∆)n, j = 0, n ≤ N + 1,

0, n > N + 1.

Therefore we have

f̂n−1 − f̂∆,n−1 =
∞∑

j=0

tj

j!
(bj

n − bj
∆,n), n = 1, 2, · · · , N + 1,

and consequently by introducingθj =
∑N+1

n=1 |bj
n − bj

∆,n|,

N+1∑
n=1

|f̂n−1 − f̂∆,n−1| ≤
∞∑

j=0

tj

j!

N+1∑
n=1

|bj
n − bj

∆,n| =
∞∑

j=0

tj

j!
θj .

Through the following argument, we find an upper bound forθj .

θj =
N+1∑
n=1

|bj
n − bj

∆,n|+
N+1∑
n=1

∣∣∣∣∣
N+1∑

k=1

(M∞)nkbj−1
k −

N+1∑

k=1

(M)nkbj−1
∆,k

∣∣∣∣∣ =
N+1∑
n=1

N+1∑

k=1

|(M)nk||bj−1
k − bj−1

∆,k |.

Therefore, we have

θj ≤
N+1∑

k=1

|bj−1
k − bj−1

∆,k |
N+1∑
n=1

|(M)nk| ≤ cN2
N+1∑

k=1

|bj−1
k − bj−1

∆,k | = cN2θj−1,

for some positive constantc. With some calculations, we see thatθj ≤ (cN2)jθ0. Sinceb0
n = f̂0

n andb0
∆,n = ˆf0

∆,n,

θ0 =
∑N+1

n=1 |b0
n− b0

∆,n| =
∑N

n=0 |f̂0
n− ˆf0

∆,n| is the error in the representation of the initial data which is assumed to
be zero. Therefore, we have

‖q̂N − q̂∆‖22 =
N∑

n=0

|q̂n − q̂∆,n|2 ≤
(

N∑
n=0

|q̂n − q̂∆,n|
)2

=




∞∑

j=0

tj

j!
θj




2

≤



∞∑

j=0

tj

j!
(cN2)jθ0




2

= 0,

and thence the desired result.

To analyze the accuracy of the scheme, we first show that the approximations for the state and adjoint variables
are spectrally convergent.

Theorem 3. If f, p ∈ L∞(0, T ; Hr
wα

(R)), r > 1, then for allt ∈ [0, T ] the following holds

‖f(·, t)− f∆(·, t)‖2wα
= O(N−r), and ‖p(·, t)− p∆(·, t)‖2wα

= O(N−r).
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Proof. The argument is the same forf andp, so we only discuss the statement forf . We have

f(x, t)− f∆(x, t) =
∞∑

n=0

f̂n(t)H̃n(x)−
N∑

n=0

f̂∆,n(t)H̃n(x)

=
N∑

n=0

(
f̂n(t)− f̂∆,n(t)

)
H̃n(x) +

∞∑

n=N+1

f̂n(t)H̃n(x).

From Lemma 1 we know that the first term in the last line of the equation above is zero; hence Lemma 3 gives us the
following bound for the error:

‖f(·, t)− f∆(·, t)‖2wα
=

∫

R

[ ∞∑

n=N+1

f̂n(t)H̃n(x)

]2

w(x)dx

=
√

π

α

∞∑

n=N+1

|f̂n(t)|2

≤
√

π

α

∞∑

n=N+1

α2−2r

π
n−r‖f(·, t)‖2r,wα

.

Therefore, we have‖f(·, t)− f∆(·, t)‖2wα
= O(N−r).

The following lemma provides an appropriate means to show that the Hermite discretization method is stable.

Lemma 2. LetM be the(N + 1)× (N + 1) matrixMf or Mq, and letŷ(t) be the solution to

d

dt
ŷ(t) = Mŷ, ŷ(0) = ŷ0.

Then there exists a constantCN such that for allt > 0

‖ŷ(t)‖2 ≤ CN‖ŷ0‖2.

Proof. Since the matrixM is triangular, it hasN + 1 distinct eigenvaluesλn = nγ, n = 0, 1, · · · , N , which
are the diagonal elements ofM . Therefore,M is diagonalizable and can be decomposed asM = S−1DS, where
D = diag(λn)N

n=0. Hence, the system of ODEs has the solution

ŷ(t) = eMtŷ0,

which implies the following:
‖ŷ(t)‖2 ≤ ‖S−1‖2‖eDt‖2‖S‖2‖ŷ0‖2.

Sinceγ < 0, we havee2λnt ≤ 1, n = 0, 1, · · · , N , and consequently

‖eDt‖2 = σmax(eDt) =
√

λmax(e2Dt) ≤ 1.

It is easy to show that the matricesS andS−1 have the same structure as the matrixM . That is, they are lower
triangular whenM is lower triangular, and upper triangular whenM is upper triangular. SinceS is consists of the
eigenvectors ofM , it can be constructed in such a way that all diagonal elements are 1. Definings̃ := ‖S‖max =

max
1≤i,j≤N+1

|Sij | we have

‖S‖2 ≤ (N + 1)‖S‖max = (N + 1)s̃.
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Furthermore, in [15] it is proved that
‖S−1‖∞ ≤ (s̃ + 1)N ,

which results in
‖S−1‖2 ≤

√
N + 1‖S−1‖∞ ≤

√
N + 1(s̃ + 1)N .

Therefore, we have
‖ŷ(t)‖2 ≤ CN‖ŷ0‖2.

whereCN = (N + 1)3/2(s̃ + 1)N+1.

Based on Lemma 2, we have the following stability result.

Theorem 4. There exists a constantCN such that for allt > 0

‖f∆(., t)‖wα ≤ CN‖f̂0‖2, and ‖p∆(., t)‖wα ≤ CN‖p̂0‖2.
Proof. We only prove the inequality forf∆, since the argument is the same forp∆. We have

‖f∆(., t)‖2wα
=

∫

R
(f∆)2wα(x)dx =

∫

R

(
N∑

n=0

f̂∆,n(t)H̃n(x)

)2

wα(x)dx

=
√

π

α

N∑
n=0

(f̂∆,n(t))2 =
√

π

α
‖f̂∆(t)‖22 ≤ C‖f̂0‖22.

Now we investigate the spectral convergence in approximating the control variable.

Theorem 5. Letf ∈ L∞(0, T ; Hr
wα

(R)), r > 2 andN ≥ 2. Then for a positive constantc, we have

|u− u∆| ≤ c T

∞∑

n=N

n1−r.

Proof. We start from optimality equations in the continuous and discrete form:

νu +
∫ T

0

∫

R
(∂xf) pwα dx dt = 0,

νu∆ +
∫ T

0

∫

R
(∂xf∆) p∆ wα dx dt = 0.

We note that
∫

R
(∂xf)pwαdx =

∫

R

( ∞∑
n=0

f̂n∂xH̃n(x)

)( ∞∑
n=0

p̂nH̃n(x)

)
wαdx

= −α

∫

R

( ∞∑
n=0

√
2(n + 1)f̂nH̃n+1(x)

)( ∞∑
n=0

p̂nH̃n(x)

)
wαdx

= −α

∞∑
n=0

∞∑

k=0

√
2(n + 1)f̂np̂k

∫

R
H̃n+1(x)H̃k(x)wαdx

= −α

∞∑
n=0

√
2(n + 1)f̂np̂n+1

√
π

α

= −
∞∑

n=0

√
2π(n + 1)f̂np̂n+1.
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Similarly, we have ∫

R
(∂xf∆)p∆wαdx = −

N−1∑
n=0

√
2π(n + 1)f̂∆,np̂∆,n+1.

Therefore,

−
(∫

R
(∂xf)pwαdx−

∫

R
(∂xf∆)p∆wαdx

)
=

∞∑
n=0

√
2π(n + 1)f̂np̂n+1 −

N−1∑
n=0

√
2π(n + 1)f̂∆,np̂∆,n+1

=
N−1∑
n=0

√
2π(n + 1)

(
f̂np̂n+1 − f̂∆,np̂∆,n+1

)

+
∞∑

n=N

√
2π(n + 1)f̂np̂n+1.

Noting that

f̂np̂n+1 − f̂∆,np̂∆,n+1 = f̂np̂n+1 − f̂np̂∆,n+1 + f̂np̂∆,n+1 − f̂∆,np̂∆,n+1

= f̂n (p̂n+1 − p̂∆,n+1) + p̂∆,n+1

(
f̂n − f̂∆,n

)
,

we can write

1√
2π

∣∣∣∣
∫

R
(∂xf)pwαdx−

∫

R
(∂xf∆)p∆wαdx

∣∣∣∣ ≤
N−1∑
n=0

√
n + 1|f̂n|.|p̂n+1 − p̂∆,n+1|

+
N−1∑
n=0

√
n + 1|p̂∆,n+1|.|f̂n − f̂∆,n|

+
∞∑

n=N

√
n + 1|f̂n|.|p̂n+1|.

From Lemma 1, we have
N∑

n=0

|f̂n − f̂∆,n|2 = 0, and
N∑

n=0

|p̂∆,n − p̂n|2 = 0,

which implies that|f̂n − f̂∆,n| = 0 and|p̂∆,n − p̂n| = 0 for n = 0, 1, · · · , N . Hence

1√
2π
|
∫

R
(∂xf)pwαdx−

∫

R
(∂xf∆)p∆wαdx| ≤

∞∑

n=N

√
n + 1|f̂n|.|p̂n+1|.

AssumingN ≥ 2, Lemma 3 gives us
∞∑

n=N

√
n + 1|f̂n|.|p̂n+1| ≤

∞∑

n=N

√
n + 1(

α1−r

√
π

)2n−r/2(n + 1)−r/2‖f‖r,wα‖p‖r,wα

≤ cfp

∞∑

n=N

nn−r/2n−r/2 = cfp

∞∑

n=N

n1−r,

in which cfp = (α2−2r)/π‖f‖r,wα‖p‖r,wα . Therefore, the desired accuracy estimate for the control variableu can
be written as follows

|u− u∆| ≤ c T

∞∑

n=N

n1−r,

wherec =
√

2π/νcfp.
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An important property of the numerical scheme is that the Hermite spectral discretization provides conservative-
ness. We prove the following: ∫

R
f∆(x, t)dx =

∫

R
f∆(x, 0)dx, t > 0.

First, we note that for anyt > 0,

∫

R
f∆(x, t)dx =

N∑
n=0

f̂∆,n(t)
∫

R
H̃n(x) dx

= f̂∆,0(t)
∫

R
H̃0(x) dx.

This is true because of Lemma 4 which states that
∫
R H̃n(x)dx = 0 for n ≥ 1.

Noting thatdf̂∆/dt = Mf f̂∆, and the fact that the first row of the matrixMf is zero, we have

f̂∆,0(t) = f̂∆,0(0), t > 0.

Therefore, we have
∫

R
f∆(x, t)dx = f̂∆,0(t)

∫

R
H̃0(x) dx

= f̂∆,0(0)
∫

R
H̃0(x) dx

=
N∑

n=0

f̂∆,n(0)
∫

R
H̃n(x) dx

=
∫

R
f∆(x, 0) dx.

6. NUMERICAL EXPERIMENTS

Since the system of ODEs which we need to solve in order to obtain the numerical solutions are first-order linear
systems, there exists no time discretization in our numerical scheme. That is, we can calculate the Hermite expansion
coefficients analytically and without any time discretization error. The triangular structure of the matrices of coeffi-
cients with distinct eigenvalues makes it possible to decompose the mentioned matrices and solve the system of ODEs
simply by matrix products. Therefore, the errors presented in this section are only induced by spatial discretization.

In [9] it is stated that the Hermite spectral method does not provide good resolution for all scaling factorα. It is
thence proved that to approximate Gaussian-type functionse−sx2

, the scaling factorα must satisfy0 < α <
√

2s.
Consider the forward FP equation

∂tf(x, t)− c∂xxf(x, t) + ∂x ((γx + u)f(x, t)) = 0.

It is easy to see that the stationary solution, which satisfies∂tf = 0, or equivalently

∂x (c∂xf − (γx + u)f) = 0,

is as follows:
f(x) = C0 exp

( γ

2c
x2 +

u

c
x
)

,

whereC0 is a constant. Comparing the stationary solution with the weight functionwα(x), while the control variable
u = 0, motivates us to setα =

√
−γ/2c. This choice satisfies the condition mentioned in [9], and seems to be the

best option since to find the optimal scaling factor is still an open problem.
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To illustrate the importance of choosing a proper scaling factor, consider Case 1 with a known exact solution for
the following FP equation:

∂tf − ∂xxf − ∂x(xf) = 0,

with the initial condition
f(x, 0) = e[−(x2/2)]

(
1 + cos[(π/2)x] exp[π2/8]

)
.

The exact solution of this problem is given by

f(x, t) = e[−(x2/2)]
(
1 + cos[(π/2)xe−t] exp[π2/8]e−2t

)
.

Since the parameters of the FP equation arec = 1, γ = −1, andu = 0, we setα :=
√
−γ/2c = 1/

√
2 ≈ 0.7071.

Figure 1 illustrates how different values for the scaling factor may lead to different approximations for a givenN .
However, as mentioned in [9] the Hermite approximation is accurate in solving for the asymptotic solution also without
an optimalα.

In Table 1, we see how fast the error decreases whent increases. After reaching to the equilibrium solution the error
remains at the value of the machine error. We can investigate more about Hermite discretization with this experiment.
Table 2 shows the decay of the error regarding increasingN .
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FIG. 1: Case 1: numerical (cross-marks) and exact solution (solid line) to the FP equation with different scaling
factors; left:α = 0.4, middle:α = 0.7071, right: α = 1; N = 10 andT = 10.

TABLE 1: Case 1: decay of the solution er-
ror at final time whenT increases;N = 10,
α = 0.7071

T ‖f∆ − fexact‖L2

1 2.0101e-11
2 1.2132e-16
3 3.0412e-18
4 3.0428e-18
5 3.0450e-18
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TABLE 2: Decay of the error in case 1 when
N increases;T = 1, α = 0.7071

N ‖f∆ − fexact‖L2

5 4.2193e-07
10 2.0101e-11
15 1.0275e-14
20 2.9166e-18

Since in our Hermite spectral discretization, the initial condition of the differential equation has to be mapped into
the approximation spaceVN , if N is not large enough to have a precise representation of the initial data, one cannot
expect a satisfactory numerical result. However, in Fig. 2 we see that for the problems dealing with a Gaussian-type
function, the influence of the error in representing the initial data becomes negligible along time evolution.

Next, we extend the experiment to an optimal control problem and consider Case 2. We setc = 1, γ = −1,
ν = 0.1, T = 1, and introduce the following initial condition for the FP equation:

ρ(x) = e[−(x2/2)]
(
1 + cos[(π/2)x] exp[π2/8]

)
.

In order to make it possible to illustrate the spectral accuracy of the adjoint and the control variables, we insert the
desired function

fd(x, t) = e[−(x2/2)]
(
1 + cos[(π/2)xe−t] exp[π2/8]e−2t

)

into the optimality system, which is the same as the solution of the forward FP equation. With this setting, the exact
solution of the optimality system is given byf = fd, p = 0, andu = 0. We apply our spectral discretization for this
optimality system, and obtain very accurate numerical approximations; see Table 3 for the norm of the solution errors.
We observe that the Hermite spectral method converges spectrally and is very accurate even for smallN .

In Case 3, we impose the PDF to follow a desired function which is a Gaussian with a varying center. The control
variable then must vary in order to keep the PDF as close as possible to the desired function. Letν = 0.1,

−5 −4 −3 −2 −1 0 1 2 3 4 5
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x

t

−5 −4 −3 −2 −1 0 1 2 3 4 5

0
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x

t

FIG. 2: Case 1: Accurate approximation for the solution atT = 1 (top graph), even if the initial solution is not well
approximated (bottom graph). Left figure:N = 5, right figure:N = 10. Cross-marks represent the numerical solution
and the solid lines represent the exact solution.

TABLE 3: Case 2: Accurate approximation results of the opti-
mality system for differentN

N ‖f∆ − fexact‖L2 ‖p∆ − pexact‖L2 |u∆ − uexact|
5 1.6858e-05 5.3832e-15 2.1653e-16
10 6.8641e-10 5.3836e-15 5.9684e-16
15 4.3062e-13 5.3870e-15 2.1858e-15
20 1.0100e-14 5.9588e-15 1.5715e-16
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fd(x, t) =
1√

2πσ2
exp

(
− (x− 2 sin(πt/5))2

2σ2

)

with σ = 0.2, and consider the following setting for the evolution of PDF. The initial PDF is

f0(x) =
1√

2πσ2
exp

(
− x2

2σ2

)

with σ = 0.5, and the parameters in the forward equation areγ = −1, c = 0.32. We consider a model predictive
control scheme, which is introduced in [2], to trackfd by the PDF. In this control scheme, we divide the time interval
[0, T ] into k subintervals, and solve the optimization problem for any time window of size∆t = T/k. At any
time window(tk, tk+1] an optimal controlu imposes the PDF of that window to evolve towards the desired function
fd(x, tk+1). While for a givenu, the state and the adjoint variables are approximated directly with the Hermite spectral
method, we employ the nonlinear conjugate gradient scheme proposed in [2] to evaluate the optimal controlu. The
final PDF of a window is considered to be the initial solution of the next window. Figure 3 along with Table 4 show
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FIG. 3: Case 3: Approximated solution of FP equation (cross-marks) tracking the desired PDF (solid line) at different
time windows.

TABLE 4: Case 3: The optimal control
variableu at different time windows

Time interval u
(0,0.5] 1.1374
(0.5,1] 1.7166
(1,1.5] 2.0767
(1.5,2] 2.1216
(2,2.5] 1.9601
(2.5,3] 1.5307
(3,3.5] 0.9934
(3.5,4] 0.4265
(4,4.5] 0.0019
(4.5,5] 0.0000

International Journal for Uncertainty Quantification



A Hermite Spectral Method for a Fokker-Planck Optimal Control Problem 249

the outcome of this control strategy. In this experiment,∆t = 0.5, α = 0.7, andN = 50. With this setting, it takes
around 10 minutes to obtain the numerical solution by MATLAB.

Finally, to examine the Hermite discretization scheme concerning conservativity, we introduce Case 4. In this
experiment, we can also compare the approximated solution with the exact solution of an FP equation with a non-zero
u, which is presented in [1]. The exact solution of the FP equation

∂tf(x, t)− c∂xxf(x, t) + ∂x ((γx + u)f(x, t)) = 0

with the initial condition
f0(x) = δ(x)

is a Gaussian distribution with meanµ(t, u) = −u/γ + (u/γ)eγt and variancēσ2(t) = −c/γ(1− e2γt); that is

f(x, t, u) =
1√

2πσ̄2(t)
exp

(
− (x− µ(t, u))2

2σ̄2(t)

)
.

Since it is impossible to represent the Dirac delta functionδ(0) by Hermite functions, we apply a temporal shift in the
exact solution in order to have a Gaussian function as the initial condition. In Fig. 4, timet = 1 has been considered
to be the starting time of the process which evolves under the action of the controlu = 2. We observe how fast the
approximation becomes accurate asN increases.

Since in this case,u 6= 0 and consequently the stationary solution is not centered at zero, it becomes harder to deal
with a proper choice of the scaling factorα. By trying different values ofα, we gain the best estimate corresponding
to α = 0.7. However, the error estimate presented in Table 5 is not as perfect as the estimation in Case 1, which is
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FIG. 4: Case 4: Approximations of the initial PDF and the solution atT = 5. Left figure: N = 5, right figure:
N = 10, bottom figure:N = 15. Cross-marks represent the numerical solution and the solid lines represent the exact
solution.
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TABLE 5: Case 4: Positivity and conservativity of Hermite discretization
N Error min

x∈R
f∆(x, 0) min

x∈R
f∆(x, 5)

∫
R f∆(x, 0)dx

∫
R f∆(x, 5)dx

5 0.4307 –3.1391e-04 –0.2628 1.0000 1.0000
10 0.0403 –5.8202e-05 –0.0095 1.0000 1.0000
15 0.0054 –2.3574e-06 –8.5076e-05 1.0000 1.0000
20 0.0053 –2.7610e-08 –2.5495e-07 1.0000 1.0000
25 0.0053 –7.8068e-10 –1.2459e-11 1.0000 1.0000
30 0.0053 –2.9185e-11 0 1.0000 1.0000

due to considering a constant scaling factor instead of a time-dependent one. The idea of the time-dependent scaling
factor is discussed in [18], while one can also think about inserting a translating factor into the Hermite functions to
treat the non-zero-centered Gaussian functions. This strategy is applied in [17].

Further, Table 5 verifies that when the number of the expansion terms is large enough to have an almost non-
negative representation of the initial PDF, the discretization scheme leads to an almost non-negative solution of the
forward FP equation. We observe that the property

∫
R f(x, t) = 1, t ≥ 0, is perfectly preserved independent of the

number of expansion terms.

7. CONCLUSION

A Hermite spectral discretization method to approximate the solution of a Fokker-Planck optimal control problem
in an unbounded domain was presented. It was proved that the resulting numerical solution is spectrally accurate
for all unknown variables of the optimality system. Moreover, it was proved that the proposed discretization scheme
preserves conservativity of the solution. Since a weighted Hermite approximation method was used, the optimal
choice for the scaling factor in the weight function was investigated with numerical experiments. Results of numerical
experiments demonstrated the theoretical estimates.

APPENDIX A. HERMITE APPROXIMATION SPACE

Hermite functions are defined as follows:

H̃n(x) =
1√
2nn!

Hn(αx)w−1
α (x), α > 0, n ≥ 0,

wherewα(x) = exp(α2x2) is a weight function andHn is the Hermite polynomial of degreen given by

Hn(x) = (−1)nex2 dn

dxn
(e−x2

).

We introduce the following inner product and the associated norm:

(y, z)wα =
∫

R
y(x)z(x)wα(x)dx, ‖y‖wα = (y, y)1/2

wα
, y, z ∈ L2

wα
(R),

and also consider the weighted Sobolev space

Hr
wα

(R) =
{

y
dky

dxk
∈ L2

wα
(R), 0 ≤ k ≤ r

}
,

equipped with the following semi-norm and norm, respectively,

|y|k,wα =
∥∥∥∥

dky

dxk

∥∥∥∥
wα

, ‖y‖r,wα =

(
r∑

k=0

|y|2k,wα

)1/2

.
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We note that the set of functions{H̃n(x), n ≥ 0} defines aL2
wα

(R)-orthogonal system with

(H̃n, H̃m)wα =
√

π

α
δn,m,

whereδn,m is the Kronecker delta. Therefore for ally ∈ L2
wα

(R), we can write

y(x) =
∞∑

n=0

ŷnH̃n(x),

with the coefficients

ŷn =
α√
π

∫

R
y(x)H̃n(x)wα(x)dx, n ≥ 0.

We define
VN = {q(x)w−1

α (x)
q(x) ∈ PN},

and note thatVN = span{H̃n(x), 0 ≤ n ≤ N}, wherePN is the set of polynomials of degree at mostN . Therefore
we can consider theL2

wα
(R)-orthogonal projectionPN : L2

wα
(R) → VN , with

PNy(x) =
N∑

n=0

ŷnH̃n(x).

In [9] the following theorem is proved, which is used in our work to estimate the approximation error in the space
VN .

Theorem 6. For anyy ∈ Hr
wα

(R) andr ≥ 0,

‖y − PNy‖wα ≤ c(α2N)−r/2‖y‖r,wα ,

wherec = (α/2r
√

π)1/2.

This theorem also helps us to estimate the Hermite coefficients. We prove the following lemma.

Lemma 3. For anyy ∈ Hr
wα

(R), r ≥ 0, andn ≥ 2,

|ŷn(t)| ≤ α1−r

√
π

n−r/2‖y(., t)‖r,wα .

Proof. Consideringn ≥ 1 and the orthogonality relation between Hermite functions, we can write the following
inequality:

|ŷn(t)|2 ≤
∞∑

k=n

|ŷk(t)|2 =
α√
π

∞∑

k=n

√
π

α
|ŷk(t)|2 =

α√
π

∫

R

( ∞∑

k=n

ŷk(t)H̃k(v)

)2

wα(v)dv

=
α√
π

∫

R

( ∞∑

k=0

ŷk(t)H̃k(v)−
n−1∑

k=0

ŷk(t)H̃k(v)

)2

wα(v)dv

=
α√
π
‖y − Pn−1y‖2wα

.

By Theorem 6, we have

‖y − Pn−1y‖wα ≤
(

α

2r
√

π

)1/2

(α2(n− 1))−r/2‖y‖r,wα .

Therefore,
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|ŷn(t)| ≤ 2−r/2

√
π

α1−r(n− 1)−r/2‖y(., t)‖r,wα .

Since forn ≥ 2 we have2(n− 1) ≥ n, and consequently2−r/2(n− 1)−r/2 ≤ n−r/2, the following holds forn ≥ 2:

|ŷn(t)| ≤ α1−r

√
π

n−r/2‖y(., t)‖r,wα .

To discretize the FP equation, we employ the following facts:

αxH̃n(x) =

√
n + 1

2
H̃n+1(x) +

√
n

2
H̃n−1(x),

d

dx
H̃n(x) = −α

√
2(n + 1) H̃n+1(x),

x
d

dx
H̃n(x) = −

√
(n + 1)(n + 2) H̃n+2(x)− (n + 1)H̃n(x),

d2

dx2
H̃n(x) = 2α2

√
(n + 1)(n + 2) H̃n+2(x),

for n ≥ 0, with H̃j(x) = 0, j < 0.
We also have

xHn(x) =
1
2
Hn+1(x) + nHn−1(x),

d

dx
Hn(x) = 2nHn−1(x),

x
d

dx
Hn(x) = nHn(x) + 2n(n− 1)Hn−2(x),

d2

dx2
Hn(x) = 4n(n− 1)Hn−2(x),

or equivalently,

αxHn(αx) =
1
2
Hn+1(αx) + nHn−1(αx),

d

dx
Hn(αx) = 2αnHn−1(αx),

x
d

dx
Hn(αx) = nHn(αx) + 2n(n− 1)Hn−2(αx),

d2

dx2
Hn(αx) = 4α2n(n− 1)Hn−2(αx).

which provide the appropriate means to descretize the optimal control system.
We also prove the following lemma to discuss the conservativity of the discretized FP equation.

Lemma 4. For n ≥ 1 ∫

R
H̃n(x)dx = 0.
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Proof. Based on
H̃n(−x) = (−1)nH̃n(x),

we see that̃Hn is an even function whenn is even, and it is an odd function whenn is odd. Therefore, it is clear that∫
R H̃n(x)dx = 0 whenn is odd. Assuming thatn is even, and using the following fact,

∫ x

0

e−t2Hn(t)dt = Hn−1(0)− e−x2
Hn−1(x),

we obtain
∫

R
H̃n(x)dx =

1√
2nn!

∫

R
Hn(αx)e−α2x2

dx

=
1

α
√

2nn!

∫

R
Hn(t)e−t2dt

=
1

α
√

2nn!

(∫ 0

−∞
Hn(t)e−t2dt +

∫ ∞

0

Hn(t)e−t2dt

)

=
2

α
√

2nn!
lim

x→∞

∫ x

0

Hn(t)e−t2dt

=
2

α
√

2nn!
lim

x→∞

(
Hn−1(0)− e−x2

Hn−1(x)
)

.

SinceHn−1 is an odd function,Hn−1(0) = 0 and the desired statement is proved.

REFERENCES

1. Annunziato, M. and Borzi, A., Optimal control of probability density functions of stochastic processes,Math. Mod. Anal.,
15:393–407, 2010.

2. Annunziato, M. and Borzi, A., A Fokker-Planck control framework for multidimensional stochastic processes,J. Comput.
Appl. Math., 237:487–507, 2013.

3. Aronson, D. G., Non-negative solutions of linear parabolic equations,Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze 3e serie, 22:607–694, 1968.
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