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A Hermite spectral discretization method to approximate the solution of a Fokker-Planck optimal control problem in
an unbounded domain is presented. It is proved that the solution of the corresponding discretized optimality system is
spectrally accurate and the numerical scheme preserves the required conservativity property of the forward solution.
The theoretical results are verified with numerical experiments.
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1. INTRODUCTION

The investigation of stochastic processes is a very active research field with many applications in technology, science,
and finance. In particular, the possibility to control sequences of events subject to randomness is desirable for real
applications. In this paper, we consider continuous-time stochastic processes described by the following multidimen-
sional model:
{ dXt = b(Xt,t,U) dt + G(Xt,t) th (l)
th = X07

where the state variabl¥, ¢ R? is subject to deterministic infinitesimal increments driven by the vector-valued drift
functionb(z, t;u) € R?, and to random increments proportional to a multidimensional Wiener pratgss R™,
with stochastically independent components. The dispersion metrix) € R?<™ is full rank.

This is the so-called @t stochastic differential equation (SDE) [7], where we model the action of a control function
u with the purpose to drive the random process to attain desired objectives. In deterministic dynamics, the optimal
control is achieved by finding the control lawthat minimizes a given objective given by a cost functian@k’, «)
with the constraint given by a deterministic dynamical model. In the stochastic case, the state evgligicendom
so that a direct insertion of a stochastic process into a deterministic cost functional will result in a random variable.
To circumvent this difficulty and determine a robust control that does not depend on the single realizations of the
process, an alternative approach was proposed in [1, 2], based on the fact that the state of a stochastic process can be
completely characterized by the shape of its probability density function (PDF). The evolution of the PDF associated
to the stochastic process is modeled by the following Fokker-Planck (FP) model:

d
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f(l‘,to) = p('T)’ (3)
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where f denotes the PDF function, and the diffusion coefficient is given by the positive-definite symmetric matrix
a= oo’ /2, with elements
1 m
Qij = 3 ; Oik Ojk-

The initial PDF distributiorp must be non-negative and normalizgd,p(x)dz = 1. The FP model (2) is a parabolic
problem on a multidimensional space domain, where the dimension corresponds to the number of components of the
stochastic process; see also [19, 20]. Moreover, the problem (2)—(3) differs from a classical parabolic problem because
of the additional requirements of positivity of solution and conservativeness. In fact, the FP equation with tipe given
guarantees the following:

Fa,t) > 0, /f(a:,t)da:: 1, forallt> .
Q

The latter property results from the fact that we can write the FP equation in flux form, and vanishing fluxes on the
boundary or at infinity are assumed. Notice that, in most cases, the FP problem is defined in an unboun@&d set in
because no bounds on the values of the statare assumed. In this case, existence and uniqueness to the FP problem
often rely on the concept of uniform parabolicity [8]; see, in particular, [2—4] and [14] and the references therein.

Our purpose is to investigate the discretization of the optimality system resulting from the optimal control strategy
of [2] with a FP model in an unbounded domain. In this case, finite-difference or finite-element methods cannot be
applied. By employing a suitable set of basis functions, spectral methods allow to treat unbounded domains. Since in
our FP model, the solutions at infinity decay exponentially, we consider Hermite functions as basis functions, which
are Hermite polynomials multiplied by a Gaussian. With this choice, we also take advantage of reducing the optimality
system of partial differential equations (PDES) into a system of ordinary differential equations (ODES) with resulting
sparse-band matrices of coefficients; see also [9, 10].

This paper is organized as follows. In Section 2, we discuss the FP equation in an unbounded domain. In Section 3,
a FP control problem is formulated and the corresponding optimality system in an unbounded domain consisting of
state, adjoint, and optimality condition equations is presented. The required properties and equipment for Hermite
approximation are discussed in the Appendix. In Section 4, the Hermite spectral discretization of the state and adjoint
equations is investigated. As a result of this section, the systems of PDES, describing the state and the adjoint equations,
are transformed to systems of ODEs. The matrix representation of these systems are presented, which provides an
appropriate means to solve the system and to analyze the discretized scheme. In Section 5, the discretized scheme is
analyzed, and the accuracy of the Hermite-spectral method is proved by showing that the error decreases spectrally as
the number of expansion terms increases. We also investigate the conservativity of the scheme. The accuracy of the
discretization method is investigated in Section 6 with numerical experiments. Section 7 presents a conclusion of this
work.

2. THE FOKKER-PLANCK EQUATION IN AN UNBOUNDED DOMAIN

Denote withf (z, t) the probability density to find the proces atz = (z1,...,z4) € Q = R? attimet. Further, let

f(x, t;y, s) denote the transition density probability distribution function for the stochastic Markov process to move
fromy € Qattimestoxz € Q attimet > s, that is related to the probability of the procesét) € (z,z + dx)
conditioned taX (s) = y. We have

f@ iy, s)de = p{X(t) € (2,2 + dz)| X (s) = y},

wherep is a measure on probability space. Bdtlx, ¢) andf(x, t;y, s) are nonnegative functions and the following
holds:

flx,t;y,8) >0, / f(:c,t;y,s) de=1 forallt>s. 4)
Q

That is, the transition probability density should be non-negative for all values of the arguments and be normalized to
one after integration over the destination state.
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If p(y, s) is the given initial density probability of the process at tispéhen we have that the probability density
of the process at time> s is given by the following:

flz,t) = /Qf(aat;y, s)p(y, s) dy. (5)

Also p must be non-negative and normalizgdp(y, s)dy = 1.

In our discussion, the Fokker-Planck equation is defined)os Q2 x (0,7), and we consider an unbounded
domain,© = R¢. We assume that the initial distributignis given (we drops in the initial distribution) and hence
the Fokker-Planck equation modeling the evolution of the probability derisitisfying (4) at all times is given by

(2)—3).

Next, we introduce some assumptions on the FP model that guarantee its solvability. We have the following:
Assumption 1.

1. The coefficient function,; is bounded and satisfies the following uniform ellipticity condition for a constant
0> 0:

d
> il )EE; > 01E[7,  VEERY (2,t) € Q.
ij=1
2. The coefficient functiorts and 0, a,;, ¢,j = 1, ..., d, satisfy the following:
bi, Oy, a;5 € LY0,T; LP(2))
wherep andq are such tha < p, ¢ < co, andd/2p + 1/q < 1/2.
3. The function®,,,b;,i =1, ...,d, satisfy
Oy, b; € LA(0,T; LP(Q2))
wherep andq are such thatl < p,q < oo, andd/2p + 1/q < 1.

These assumptions were introduced in [3] to prove existence and uniqueness of non-negative solutions of parabolic
problems. In [2], the results of [3] have been specialized to prove existence, uniqueness, and positivity of solutions to
the forward FP problem (2)—(3) in a bounded domain. We have the following:

Theorem 1. Suppose thali; and a;; in (2) satisfy the Assumption 1, and take the initial conditioa Hg($2) and
homogeneous boundary conditions Bn= 992 x (0,7). Then there exists a unique weak solutiprio (2)—(3).
Further, the solutionf has the following additional property:

If 0 <p<ma.e.in,then
0< f(z,t) <m(1+Ck), inQ

wherek = 1/23°0 || 329_, 0,4
the FP operator.

lpa + 1 5%, 02,bill,., andC depends only off’, 2, and the structure of

We use this theorem to discuss existence, uniqueness, and positivity of the solution to the FP problem (2)—(3) in
an unbounded domain = R?. To this end, we define some special boundary value problems, as is proposed in [3].
Let O = {z;]z| < k} andQ* = QF x (0,7). For each integek > 3, let (¥ = (¥(x) denote aCs° (R™)
function such that® = 1 for |z| < k — 2, ¥ = 0for [z| > k— 1,0 > ¢*¥ < 1 and|d,*| is bounded independent
of k. According to Theorem 1, for eachthere exists a unique and bounded weak solufioto the boundary value

problem
d d

0t =5 S0 O (M) + D0 (biw) ) =0 i@,
2 i,j=1 i=1 ©

f(@,0) = *(@)p(z) inQF,

with homogeneous boundary conditions. Extend the domain of definitigh bf settingf* = 0 for |z| > k.
In [3] one can find the arguments which prove the following theorem.
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Theorem 2. If b; anda;; in (2) satisfy the Assumption 1, the functighin (6) is boundedp € H'(2), andp > 0
almost everywhere if2, then the problem (2)—(3) possesses a unique and non-negative weak solution.

Although the results presented in [3] and later generalized in [12] prove the existence of a unique non-negative
solution for our problem belonging to the spac® ((0, T); L .(Q2)) N L2((0,T); H} (), the arguments provided
in [13] show that this solution may have higher regularity. In fact, we have thatfop, f ¢ H"+27/2+1(Q) as long
asp € H"2(Q) and the coefficients;; andb; belong toH™"/2(QQ).

Notice that in our case and in many applications the FP parameter functions are smooth and Assumption 1 and
the assumptions in [13] are immediately satisfied. For additional results on the Fokker-Planck equation with irregular

coefficients see [14].

3. A FOKKER-PLANCK OPTIMAL CONTROL PROBLEM

The control strategy proposed in [2] requires to minimize an objective under the constraint given by the FP equation.
The implementation of this strategy is an instance of the class of model predictive control (MPC) schemes [11], which
is widely used in engineering applications to design closed-loop algorithms. To illustrate this meth@d]'}Jdte the
time interval where the process is considered. In [2], the time interval is subdivided in time windowsAf siad on
each of these windows an open-loop FP optimal control problem is solved that uses the solution PDF of the previous
time window as initial condition, and the target is specified at the end of each window. This procedure is repeated by
receding the time horizon until the last time window is reached. In particular, the approach in [2] considers vector-
valued constant control functions on each time window such that along the inf@r¥gla piecewise constant control
is obtained. For the reason of clarity in error analysis, we focus on one time window, that we identifg With

Now, within this framework, we formulate the problem to determine a coniral R such that starting with
an initial distributionp the process evolves towards a desired target probability defigityt) at timet = T This
objective can be formulated by the following tracking functional:

1 v
J(fu) = SIFCT) = fala DR, + Sl ™)
wherefu|? = uf + ...+ u7, andv > 0 is a constant. Witlj - |2, we denote the following:
[0l = [ o(@ua(e)ds
Q

wherew, (z) = exp(ax?) is a weight function, and > 0 must be appropriately chosen.
The optimal control problem to find that minimizes the objectivé subject to the constraint given by the FP
equation is formulated by the following:

min 21, T) ~ fal T, + 2 luf? ®)
d d

8tf(x’t) - % Z 81@ (aij(xat) f(x7t)) + Zaubq (bi(xvt;u) f(.’L‘,f)) =0 (9)
ij=1 i=1

£(2,0) = ola). 10)

Notice that for a given control function, Theorem 2 states that the solution of the FP model (9)—(10) is uniquely
determined. We denote this dependencefby= f(u) and one can prove that the mapping— f(u) is twice
differentiable [16]. Therefore, we can introduce the so-called reduced cost funclignain by

J(u) = J(f(u),u). (11)

Correspondingly, a local minimum* of .J is characterized by’ (u*; 5u) = 0 for all 5u € R,
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To characterize the solution to our optimization problem, we consider the Lagrange formalism and formulate the
first-order optimality conditions. Consider the Lagrange functional

(faup) - J(fa

d
// 8tf—f Zam aij £) + Y 0x, (bi(u) ) | pwa dadt,
i=1

7,7=1

wherep = p(z, t) represents the Lagrange multiplier. The first-order optimality conditions for our FP optimal control
problem are formally derived by equating to zero thedfret derivatives of the Lagrange function with respect to the
set of variableg f, u, p); see, e.g., [5, 16]. The optimality conditions result in the following optimality system. We
have

d d
o f — % Z 83TJ (ai; f)+ Z@T (bi(u) f)=0 In@Q, (state equation)
i,j=1 i=1
f(z,0) =p(x) inQ, (initial condition)
d d
—0(pwy) — = Z aij 02, (pwa) — Y bi(u) Oy, (pwa) =0 inQ, (adjoint equation) (12)
=1

i,j=1

[\

—p(z,T) = f(z,T) — fa(z,T) inQ, (terminal condition)

ug

d
vy + <Z O, (gbl > ,p> =0 inQ, 1=1,...,¢ (optimality equations)
i=1 w

o

where we use the following inner product:

<d),11)>w“:/0 /Qd)(x,t)tl)(:v,t)woc(x)d:vdt.

Notice that the state variable evolves forward in time and the adjoint variable evolves backwards in time. We
remark that the FP equation is a particular instance of the forward Kolmogorov equation and the adjoint equation
resembles the backward Kolmogorov equation.

It should appear [1, 2] clearly that tfign component of the reduced gradidnf is given by

d
o b;
(VJ)Z_VUZ+<28L (aaulf)vp> ) l:177€7 (13)
=1

W

wherep = p(u) is the solution of the adjoint equation for the givéfu).

Notice that the optimization problem given by (8)—(10) represents a bilinear control problem where the dependence
of the statef on the controlu is nonlinear and the corresponding optimization problem is nonconvex. However,
standard arguments [1, 2, 5, 16, 21] allow to prove existence of optimal solutions of the open-loop cantrb)in

4. HERMITE DISCRETIZATION OF THE FP OPTIMALITY SYSTEM

We consider a FP control problem corresponding to a representative stochastic process given by the Ornstein-Uhlenbeck
process, and for simplicity we focus on a one-dimensional setfing,1, in which the functiorb is linear anda is

constant. We hav&(x,t;u) = yz + v anda(z,t) = 2¢, wherey < 0, v andc > 0 are constants. In this case, the
optimality system is given by
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For the analysis of the discretization of the optimality system with Hermite functions, we need to discuss some
properties of the Hermite approximation space. For this purpose, we refer to the Appendix.
The state and adjoint variables are approximated in the space of Hermite functions as follows:

fl@t) =Y fa®Fn(@),  plat) =Y pu(t)Hn(@).
n=0 n=0

For the adjoint equation, we note that the approximation
pla,t) = pu(t)Fn (@)
n=0

is equivalent to

bl 1wala) = - (0, ().

n=0

The initial dataf (z, 0) = p are also represented in the Hermite functions spageby= " f°A,, (), where

AO*i .’L‘~ xT)w xT X n .
fn—ﬁ/Rp( o (@) we(z)dz, n>0

Sincep(x,T) = fa(x,T) — f(x,T), after calculating the numerical solution of the forward equation, the terminal
condition for the adjoint variable can be approximated hy(z,T') = >~°°  pr.Hn(z), where

b= = / fala, T () wa(@)de — fo, 120,

Introducing the Hermite expansions fflandp into the state and adjoint equations, fok> 0 we have

% Ful®) = ny fou () + ous/Znfou1(8) + (v + 2620)/n(m = 1) fr_a(b), (14)
with f_, =0, f_» = 0, and
5 0) = mvBa(t) + A F D ()% (1 + 2026/ (0 - D+ D) (19

The Egs. (14)-(15) represent two infinite systems of ODEs. These systems are truncated by considering the ap-
proximations R R . R A
[Fa0(), far(®), - fan®] = [fo(t), f1(£), ],
and
[Pao(t),Pai(t), -, Da,n ()] =~ [po(t), pr(t), -]

Therefore, the systems of ODEs which we solve are as follows:

%fA,n(t) = anA,n(t) + au\/ﬁfA,nfl(t) + (Y + 20(20) V n(” - ]-)fA,n72(t)7 (16)
fan(0) = pn,
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and

—%;ﬁA,n(t) = nypan(t) + oaur/2(n + 1)pa n+1(t) + (v + 20(20)\/ (n+2)(n 4+ 1)pa nt2(t), (17)

ﬁA,n (T) = ﬁT,na

for0 <n < N,0<t<T,with fm— = 0 andpa,ny—; = 0, = —1,—2. This corresponds to a Galerkin projection
of f(-,t) andp(-,t) onto the Hermite approximation space

Vn =spar{H,(z), 0 <n < N}
Definingt = T — ¢ andd, (t) = p,(T), the last equation is equivalent to

i‘jA,n(t) = n'quA,n(t) + au 2(71 + 1)(1A,n+1(t) + ('Y + 20(20) (n + 2)(71 + 1)(jA,n+2(t>7 (18)

dt A A
dAn (0) = P1¥k -

The systems (16) and (18) can be written in the following matrix form:

dfa B ;
=My fa, (19)
and dé
qn A
— 20
dt qdA, (20)
where

fa=1fao®), fan(®).- fan®]",
qAA = [(jA,O(t)v (jA,l(t)v e 7@A,N(t)]T7
andMy andM, are two(N + 1) x (N + 1) three-diagonal matrices with the elements
ny, i=Jj,
ouV2n, 1—j=1,

My),. = 1<4,7<N+1,
M= e yat ), io=2, ’
0, otherwise
ny, ]:%
X \/2 1, ._‘:17 ..
(Mg);; = ) uy2nt ) e 1<i,j<N+1,
! (v +2x%c)y/(n+2)(n+1), j—i=2,

0, otherwise

wheren = i — 1. Notice that the first row il and also the first column i/, are zero.
Once we have calculateth andga by

fa(t) = exp(Mst) fR,  and  Ga(t) = exp(Mgt) G,
the optimality variable: can be computed. Representing the approximated solutions by

N N
fala,t) =) fan®Fa(x),  and  pae,t) =) pan(t)Ha(),

n=0 n=0

we have
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/R(afo)pAwadx_/R<zN:f n > <ZpAn n( )wadI

n=0

N
(Z \/2 Tl+1 fA n n+1 > (ZpAn n >U~}c>cd-1j

0

>

| |
9
o

N N
“ZZ‘/ (n+1) fAnpAk/ n+1(x)|:|k(m)w(xda:
n=0%k

O

o> VI D
n=0
N—-1 .
= _ Z V2 (0 + 1) fanbAntl
n=0

Thenvu + (0, f(x,1),p(z,t)),,. = 0gives the following:
1
%

N— T R
Z V2r(n+1) / FAnDAnt1 dE.
— 0

K7\

1 [T
<aﬂﬁfA7pA>u,LX = —*/ /(amfA)pAw‘xdx dt
vVJo Jr

<\»~

5. ERROR ANALYSIS AND CONSERVATIVENESS OF THE HERMITE SPECTRAL DISCRETIZATION

We recall that substituting the Hermite expansion into the FP control system results in two infinite systems of linear
ODEs. Corresponding to each system, there is a mafrjx which is lower triangular for the state equation and upper
triangular for the adjoint equation. To have a practical scheme, we have to truncate these matrices, or equivalently,
consider some truncated systems of ODEs, which is a source of error in our discretization scheme. In the following,
we investigate the influence of this error on the accuracy of our approximation methgl]|L&te the Euclidean

norm inRV+1,

Lemma 1. AssumingV is sufficiently large so that there is no error in the spectral representation of the initial data,
and f(-,t), fa(-,T) € Vy for anyt € [0, T}, then

Ifn = falo=0, and [[py —palls =0.
That is, there will be no error for the truncation of the infinite ODE systems.

Proof. For the forward case, no truncation error appears in calculating the Hermite coeffifiebyssolving the
finite ODE system (19). This is because of the fact that the system (14) is uncoupled in the senserthat/idhe
value off,, is independent of the value ¢f,. Thatis,Py f(-,t) = fa(-,t) for everyt € [0, T].

The backward case can be analyzed following the procedure proposed in [6]. CaWsidas the representing
matrix for the ODE system transformed of the adjoint equation drttie corresponding truncated matrix. The matrix
M is obtained fromM,, by removing all rows and columns with index larger thsint 1. We can write

o o
. . tMI Y - v
g=eM=tgd =3 — |4 = > T ML)
§=0 §=0
That is, forn > 1 we have
>t =t
Z OB =3 b
0 j=0 J:
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in which b/ = (M2 ¢%),,.. Since we have assumed thyt, t), f4(-,T) € Vi, we have(¢q®), = 0forn > N + 1.
Noting that) is an upper triangular matrix, it follows théd/,¢°),, = 0 for n > N + 1. Therefore, forj > 1,

SN+l R N+1 o NAl :
bl = > (ML)uk(@®)k = Y (Moo)nk (M40 = > (Moo)urby
k=1 k=1 k=1

Similarly fa -1 = 3520t /)b ., with

A (M)ubih, §>1n<N+1,
bﬁ,n:(MjfE)n: (Fn, j=0,n<N+1,
0, n> N + 1.
Therefore we have -
fn—l_fA,n—lzz‘%(b%—b£7n), n=12---,N+1,
7=0

and consequently by introduciy = S0 [b] — b |,

N+1 R s} N+1 %) t
Z'fn 1= fAn 1‘<Z Z|bj_bjAn ZZ]—GJ
n=1 ! n= 7=0
Through the following argument, we find an upper bounddpr
N+1 ) ) N+1|N+1 ] N+1 N+1N+1
= 2 h =Wl D D (Mehuebl ™ = > (Maw) = D D (MOl = V|
n=1 n=1 | k=1 k=1 n=1 k=1

Therefore, we have

N+1 N+1 N+1
1 i1 ji—1 j—1
9]‘ < E Ibi —b]A,k;| E |(M)nk| < cN? E |b?€ - bJA,k| = CNQGj—h
k=1 = k=1

for some positive constant With some calculations, we see thgt< (cN2)70,. Sinceb?, = f0 andb} ,, = fgﬁn,

00 = SN [B0 — bR .| = 32N 19— £% | is the error in the representation of the initial data which is assumed to
be zero. Therefore we have

2 2

N N 2 [e%s} [e%s} tj
HqAN - QA||§ = Z ‘dﬂ - qAA,n|2 S <Z |Cjn - QA,7L|> - ]'9 S Z ﬁ(CNQ)Jeo = 07
n=0 n=0 j=0 §=0
and thence the desired result. O

To analyze the accuracy of the scheme, we first show that the approximations for the state and adjoint variables
are spectrally convergent.

Theorem 3. If f,p € L>(0,T; H;, (R)),r > 1, then for allt € [0, T the following holds

I£Ct) = fal )%, = ONTT), and ip(-,t) = palt)ll5, = O(NT).
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Proof. The argument is the same frandp, so we only discuss the statement fole have

00 N
f(z,t) = fa(z,t) Z ZfA,n(t)Hn(x)
n=0 n=0
N
Z(fn fAn( ) Z fn FI
1=0 n=N+1

From Lemma 1 we know that the first term in the last line of the equation above is zero; hence Lemma 3 gives us the
following bound for the error:

00 2
1FC.t) = FaC Bl = [ fn(t)ﬂn(x)] w(z)dx
/]R n§+1
I DT
n=N+1
Tz & 2-2
SRUED DI T
n=N+1
Therefore, we havéf(-,t) — fa(-,t)||Z, = O(N™"). O

The following lemma provides an appropriate means to show that the Hermite discretization method is stable.

Lemma 2. Let M be the(N + 1) x (N + 1) matrix M or M, and letj(t) be the solution to

Then there exists a constafify such that for allt > 0

19(®)ll2 < Cnllgoll2-

Proof. Since the matrix) is triangular, it hasV + 1 distinct eigenvalued,, = ny, n = 0,1,--- , N, which
are the diagonal elements 8f. Therefore,M is diagonalizable and can be decomposedf&s- S~!1DS, where
D = diag(A,)Y_,. Hence, the system of ODEs has the solution

§(t) = ™o,
which implies the following:

1G@)ll2 < 15~ 2l 12[1S 12 llo]l2-
Sincey < 0, we havee®*t < 1,n =0,1,---, N, and consequently

€Pt]l2 = Omax(eP?) = \/Amax(€2Pt) < 1.

It is easy to show that the matricésand S—! have the same structure as the matfvix That is, they are lower
triangular when is lower triangular, and upper triangular whé is upper triangular. Sincé is consists of the
eigenvectors of\/, it can be constructed in such a way that all diagonal elements are 1. Defiriag|S||max =

max |S;;| we have
1<i,j<N+1

1512 < (N 4+ D[[Sllmax = (N +1)5.
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Furthermore, in [15] it is proved that
1S~ oo < B+ 1)V,
which results in

IS 2 < VN + 1S oo < VN +1(E+ 1)V

Therefore, we have
19()]2 < Cwnllgoll2-

whereCy = (N +1)%/2(5 + 1)N+L,

O
Based on Lemma 2, we have the following stability result.
Theorem 4. There exists a constanty such that for allit > 0
I£aCDllwa < Onllfollz,  and [Ipa( ) wa < Cllolla:
Proof. We only prove the inequality fofa, since the argument is the same far. We have
2
a0, = [ (aPusteyte = [ (Z fan ) wa(e)da
N
m - T oA ~
= VTS () = LA < LAl
x = o
O

Now we investigate the spectral convergence in approximating the control variable.
Theorem 5. Let f € L>(0,7T; H;, (R)),r >2andN > 2. Then for a positive constant we have

oo
lu —ua| <cT Z n'~
n=N

Proof. We start from optimality equations in the continuous and discrete form:
T
Vqu/ /(&Cf)pwadxdt:(),
JO R
T
vuA—i—/ /(&fA)pAw“dxdt:O.
0 R

/ (z fnamx)) (Zﬁnﬂn(x)> wads

LS ) (S
a3 S VAT D [ @ @wads

n=0 k=0

_OCZ V 2(” + 1)fnﬁn+1g
n=0

We note that

/(axf)pwocdx
R

- Z V 271—(” + 1)fnﬁn+l-
n=0
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Similarly, we have

N-1
/(8a:fA)pchcdx = - Z V 27T(TL + 1)fA,n]5A,n+1~
R n=0

Therefore,
e} N-1
- ( [ @ oz - | (amfmawada:) = S V2 Db — S 2R+ D fanbans
R R n=0 n=0
N-1
n=0
0
+ > V2m(n 4 1) fapnia.
n=N
Noting that
fnf)n—&-l - fA,nﬁA,n—i—l = fnﬁn-{-l - fnf)A,n-&-l + fnﬁA,n—i—l - fA,nﬁA,n-{-l
= fn (ﬁn-&-l _ﬁA,n+l) +ﬁA,n+1 (fn - fA,n) 5
we can write

N-1
< Z M|fn"‘ﬁn+l _ﬁA,n+1|

0

\/% /R(axf)pwcxda;—/R(afo)pAw“dx

=z 3

1
+ Vi + 1Upa nsil-lfa — fan
0

n=

+ Z v+ l‘fn|~|ﬁn+1|~

n=N
From Lemma 1, we have

N N
S lfn—fanl?=0, and > [pan—pal* =0,
n=0 n=0
which implies that f,, — fa .| = 0 and|pa ,, — pn| = 0forn =0,1,--- , N. Hence

\/%| /R (O fproadz — /R Ocfalparvads] < 32 VATl Bl

AssumingN > 2, Lemma 3 gives us

IA

oo o0 1—7r

£ o & —r —r
SO VAt Ufal bl < 3V 1= 004 )72l 1Pl o
n=N n=N

VT

) o0
< Crp E nnfr/anr/Z =cpp § nlfr’7
n=N n=N

in whichcg, = (6®727) /7| f ||+ we [Pl 0. - Therefore, the desired accuracy estimate for the control variabén
be written as follows
oo
lu —ual <ecT Z n'=",
n=N

wherec = 27 /veyy,.
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An important property of the numerical scheme is that the Hermite spectral discretization provides conservative-
ness. We prove the following:

/fA(x,t)d$=/fA(x,0)dx, t>0.
R R

First, we note that for any > 0,

This is true because of Lemma 4 which states ma%n(x)d:c =0forn > 1.
Noting thatdfa /dt = M fa, and the fact that the first row of the matiix; is zero, we have

pr(t) = pr(O), t > 0.
Therefore, we have

/RfA(x,t)dx = fA,O(t)/]RHO($> dx
= fa0(0)

N
=3 fan(® [ @

_ /RfA(a:,O) da.

Ho(x) dz

I

6. NUMERICAL EXPERIMENTS

Since the system of ODEs which we need to solve in order to obtain the numerical solutions are first-order linear
systems, there exists no time discretization in our numerical scheme. That is, we can calculate the Hermite expansion
coefficients analytically and without any time discretization error. The triangular structure of the matrices of coeffi-
cients with distinct eigenvalues makes it possible to decompose the mentioned matrices and solve the system of ODEs
simply by matrix products. Therefore, the errors presented in this section are only induced by spatial discretization.

In [9] it is stated that the Hermite spectral method does not provide good resolution for all scalingxfalttior
thence proved that to approximate Gaussian-type functiofs , the scaling factorx must satisfy) < o < v/2s.
Consider the forward FP equation

O f(x,1) — Opo f(x,1) + Op (vo + u) f(2,1)) = 0.
It is easy to see that the stationary solution, which satigfigs= 0, or equivalently
Oz (cOuf — (o +u)f) =0,
is as follows:

u
f(x) = Coexp (}cﬁ + Eac) :

whereC) is a constant. Comparing the stationary solution with the weight funatig:), while the control variable
u = 0, motivates us to set = \/—y/2c. This choice satisfies the condition mentioned in [9], and seems to be the
best option since to find the optimal scaling factor is still an open problem.
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To illustrate the importance of choosing a proper scaling factor, consider Case 1 with a known exact solution for
the following FP equation:

with the initial condition ,
f(z,0) = el~@/2)] (14 cos[(m/2)z] exp[r?/8]) .

The exact solution of this problem is given by
Fla,t) = el /20 (14 cos|(m/2)ze " expln? /8]e ) .

Since the parameters of the FP equationcate 1, y = —1, andu = 0, we setx := /—y/2c = 1/v/2 ~ 0.7071.
Figure 1 illustrates how different values for the scaling factor may lead to different approximations for a\given
However, as mentioned in [9] the Hermite approximation is accurate in solving for the asymptotic solution also without
an optimalo.

In Table 1, we see how fast the error decreases whemeases. After reaching to the equilibrium solution the error
remains at the value of the machine error. We can investigate more about Hermite discretization with this experiment.
Table 2 shows the decay of the error regarding increa®ing

25 ‘ 2.5 ‘ 25
27 21
1.5} 1.5}
ICO 1}

0.5+ 0.5+

25 0 5 25 0 5 25 0 5
X X X

FIG. 1: Case 1: numerical (cross-marks) and exact solution (solid line) to the FP equation with different scaling
factors; left:ac = 0.4, middle: o« = 0.7071, right: « = 1; N = 10 andT" = 10.

TABLE 1. Case 1: decay of the solution er-
ror at final time wher¥” increasesjN = 10,

ax=0.7071
T ||fA 7femact||L2
1 2.0101e-11
2 1.2132e-16
3 3.0412e-18
4 3.0428e-18
5 3.0450e-18
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TABLE 2: Decay of the error in case 1 when
N increases] =1, a = 0.7071

N HfA _femactHL2
5 4.2193e-07
10 2.0101e-11
15 1.0275e-14
20 2.9166e-18

Since in our Hermite spectral discretization, the initial condition of the differential equation has to be mapped into
the approximation spadéy, if N is not large enough to have a precise representation of the initial data, one cannot
expect a satisfactory numerical result. However, in Fig. 2 we see that for the problems dealing with a Gaussian-type
function, the influence of the error in representing the initial data becomes negligible along time evolution.

Next, we extend the experiment to an optimal control problem and consider Case 2. We-skty = —1,

v =0.1,T = 1, and introduce the following initial condition for the FP equation:

o(z) = el=@/2) (1 4 cos|(/2)] exp[r?/8]) .

In order to make it possible to illustrate the spectral accuracy of the adjoint and the control variables, we insert the
desired function

fa(w,t) = =N (1 4 cos|(m/2)we ") explr? /8]e %)

into the optimality system, which is the same as the solution of the forward FP equation. With this setting, the exact
solution of the optimality system is given lfy= f4, p = 0, andu = 0. We apply our spectral discretization for this
optimality system, and obtain very accurate numerical approximations; see Table 3 for the norm of the solution errors.
We observe that the Hermite spectral method converges spectrally and is very accurate even fér small

In Case 3, we impose the PDF to follow a desired function which is a Gaussian with a varying center. The control
variable then must vary in order to keep the PDF as close as possible to the desired functios. (Lét

I 0 i 2 3 7 5 5 =4 3 =2 i 0 1 2 3 4 5

FIG. 2: Case 1: Accurate approximation for the solutiorfat 1 (top graph), even if the initial solution is not well
approximated (bottom graph). Left figur®: = 5, right figure: N = 10. Cross-marks represent the numerical solution
and the solid lines represent the exact solution.

TABLE 3: Case 2: Accurate approximation results of the opti-
mality system for differentV

N HfA - fe:nact”L2 HPA - pezact”L2 |UA - ue:ract|
5 1.6858e-05 5.3832e-15 2.1653e-16
10 6.8641e-10 5.3836e-15 5.9684e-16
15 4.3062e-13 5.3870e-15 2.1858e-15
20 1.0100e-14 5.9588e-15 1.5715e-16
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fa(z,t) = exp ( (z — 2sin(7rt/5))2)

1
V2mo?2 202

with o = 0.2, and consider the following setting for the evolution of PDF. The initial PDF is

1 z?
o) = o0 (~52)

with o = 0.5, and the parameters in the forward equationyare —1, ¢ = 0.32. We consider a model predictive
control scheme, which is introduced in [2], to trafkby the PDF. In this control scheme, we divide the time interval
[0, 7] into k subintervals, and solve the optimization problem for any time window of Aize= T'/k. At any

time window (¢, ;1] an optimal controk imposes the PDF of that window to evolve towards the desired function
fa(z, tr1). While for a givenu, the state and the adjoint variables are approximated directly with the Hermite spectral
method, we employ the nonlinear conjugate gradient scheme proposed in [2] to evaluate the optimald cdhtol
final PDF of a window is considered to be the initial solution of the next window. Figure 3 along with Table 4 show

5] AN
s
ol TN
3.5 il
5] VAN
s 2.5 it N
R TS M*#’*H’M
s A
| VAN
0.5 rsrmmssaranas ™ M
O e ]
3 2 -1 0 1 2 3

FIG. 3: Case 3: Approximated solution of FP equation (cross-marks) tracking the desired PDF (solid line) at different
time windows.

TABLE 4: Case 3: The optimal control
variableu at different time windows

Time interval U
(0,0.5] 1.1374
(0.5,1] 1.7166
(1,1.5] 2.0767
(1.5,2] 2.1216
(2,2.5] 1.9601
(2.5,3] 1.5307
(3,3.5] 0.9934
(3.5,4] 0.4265
(4,4.5] 0.0019
(4.5,5] 0.0000
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the outcome of this control strategy. In this experimext,= 0.5, « = 0.7, and N = 50. With this setting, it takes
around 10 minutes to obtain the numerical solution by MATLAB.

Finally, to examine the Hermite discretization scheme concerning conservativity, we introduce Case 4. In this
experiment, we can also compare the approximated solution with the exact solution of an FP equation with a non-zero
u, which is presented in [1]. The exact solution of the FP equation

O f(x,t) — cOpu f(x,t) + Oy ((Yz + ) f(2z,1)) =0

with the initial condition
fo(x) = 8(x)

is a Gaussian distribution with meautt, v) = —u/y + (u/y)e¥" and varianc&?(t) = —c/y(1 — e*¥"); that is

(& — u(t )’
omor(h) " (‘ 267(t) >

Since it is impossible to represent the Dirac delta funcéi@) by Hermite functions, we apply a temporal shift in the
exact solution in order to have a Gaussian function as the initial condition. In Fig. 4¢ timehas been considered
to be the starting time of the process which evolves under the action of the contrd. We observe how fast the
approximation becomes accurateMsncreases.

Since in this case; # 0 and consequently the stationary solution is not centered at zero, it becomes harder to deal
with a proper choice of the scaling factar By trying different values ofx, we gain the best estimate corresponding
to « = 0.7. However, the error estimate presented in Table 5 is not as perfect as the estimation in Case 1, which is

flz,t,u) =

-5 -4 -3 -2 -1 0 1 2 3 4 5

FIG. 4: Case 4: Approximations of the initial PDF and the solutiorfat= 5. Left figure: N = 5, right figure:
N = 10, bottom figure:N = 15. Cross-marks represent the numerical solution and the solid lines represent the exact
solution.
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TABLE 5: Case 4: Positivity and conservativity of Hermite discretization

N | Error 15161]{{3 fa(z,0) IzllGIH% falz,5) | [z fa(z,0)dz | [ fa(z,5)dx
5 | 0.4307| —3.1391e-04 —0.2628 1.0000 1.0000
10 | 0.0403| -5.8202e-05 —0.0095 1.0000 1.0000
15 | 0.0054| -2.3574e-06| —8.5076e-05 1.0000 1.0000
20 | 0.0053| —2.7610e-08| —2.5495e-07 1.0000 1.0000
25| 0.0053| —7.8068e-10| —1.2459e-11 1.0000 1.0000
30 | 0.0053| —-2.9185e-11 0 1.0000 1.0000

due to considering a constant scaling factor instead of a time-dependent one. The idea of the time-dependent scaling
factor is discussed in [18], while one can also think about inserting a translating factor into the Hermite functions to
treat the non-zero-centered Gaussian functions. This strategy is applied in [17].

Further, Table 5 verifies that when the number of the expansion terms is large enough to have an almost non-
negative representation of the initial PDF, the discretization scheme leads to an almost non-negative solution of the
forward FP equation. We observe that the propgity («,¢) = 1, t > 0, is perfectly preserved independent of the
number of expansion terms.

7. CONCLUSION

A Hermite spectral discretization method to approximate the solution of a Fokker-Planck optimal control problem
in an unbounded domain was presented. It was proved that the resulting numerical solution is spectrally accurate
for all unknown variables of the optimality system. Moreover, it was proved that the proposed discretization scheme
preserves conservativity of the solution. Since a weighted Hermite approximation method was used, the optimal
choice for the scaling factor in the weight function was investigated with numerical experiments. Results of numerical
experiments demonstrated the theoretical estimates.

APPENDIX A. HERMITE APPROXIMATION SPACE

Hermite functions are defined as follows:
~ 1
Ho(z) = ——=H,,(ax)w (z),
(=) V2rn! (xz)wg ()

wherew, (z) = exp(«?z?) is a weight function and?,, is the Hermite polynomial of degreegiven by

x>0, n>0,

n
nw2d

H,(x)=(-1)"e e

(e_”"z).

We introduce the following inner product and the associated norm:

(4, 2w = / y(@)2@wa(@)dz,  yle, = @)L vz L% (R),

and also consider the weighted Sobolev space

T dky 2
Hw“(R): y‘WGL’w‘X(R)’OSkST 5

equipped with the following semi-norm and norm, respectively,

, 1/2
R (Z y|z,wm> :
k=0

"y
dz*

|y|k,w‘X = H

W
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We note that the set of functior$l,, (z),n > 0} defines al2,_(R)-orthogonal system with

(Hna Hm)wa - ﬁé
o8

where$,, .., is the Kronecker delta. Therefore for gl L2 (R), we can write
y(@) = gnFn(x),
n=0
with the coefficients
Un = % /Ry(x)ﬂn(m)w“(x)dx, n > 0.

We define
Vi = {g(x)wi'(2) | a(x) € Pn},

and note that/y = spar{H,,(z), 0 < n < N}, wherePy is the set of polynomials of degree at maét Therefore
we can consider thé?, (R)-orthogonal projectioPy : L2, (R) — Vy, with

W

N
Pny(z) = Z gnﬁn(x)-
n=0
In [9] the following theorem is proved, which is used in our work to estimate the approximation error in the space
Vn.
Theorem 6. For anyy € H;, (R)andr >0,
ly = Pnyllw, < c(o®N)"/?|ly

wherec = (/2" \/7)/2.
This theorem also helps us to estimate the Hermite coefficients. We prove the following lemma.
Lemma 3. Foranyy € H;, (R),r >0, andn > 2,

1—
2y ) e
NG e

|G (8)] <

Proof. Consideringn > 1 and the orthogonality relation between Hermite functions, we can write the following
inequality:

k=n k=
o o) ~ n—1 ~

= — g (t)Hi (v) — g (t)H (v)) wu(v)dv
\/%/R (I;Jyk k kzzoyk k

o
= FH?J — Po_1ylls. -

By Theorem 6, we have

1/2
||y—Pn_1y||was< ) (@(n = 1))yl

_x
o /m

Therefore,
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~ 277«/2 - -
|9 ()] < 7“1 (n =172y ) o

Since forn > 2 we have2(n — 1) > n, and consequentty~"/?(n — 1)~"/2 < n="/2, the following holds fom > 2:

1—r

X R
|9 ()] < =" Py )l

To discretize the FP equation, we employ the following facts:

- n+1 ~ n -~
O(.Z‘Hn($) = \/j Hn+1($) + 5 Hn—1($)7

1 0) = /B 1) P ),

.T%Hn(x) =—/(n+1)(n+2) Hn-&-?(x) —(n+ 1)|:|”(x)’

%Hn(m) =20/ (n + 1)(n + 2) Fpy2(@),

for n > 0, with FA;(z) = 0,5 < 0.
We also have

or equivalently,
1
axH,(xx) = iHnH(ocx) +nH,_1(ax),

d

%Hn(ow:) = 2anH,_1(xz),

x%Hn(ocx) =nH,(ax) + 2n(n — 1)H,_2(ax),

d2

ﬁHn(ocx) =4on(n — 1)H,,_s(ox).

which provide the appropriate means to descretize the optimal control system.
We also prove the following lemma to discuss the conservativity of the discretized FP equation.

Lemma4. Forn >1

/R A, (z)dz = 0.
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Proof. Based on

Hn(*x) = (*1)71“71(5”)’

we see thaH,, is an even function when is even, and it is an odd function wheris odd. Therefore, it is clear that

~n(:v)dx = 0 whenn is odd. Assuming that is even, and using the following fact,

JzH

2

/ e~ Hy(#)dt = Hy_1(0) — e~ Hyy_1 (),
0

we obtain

~ 1 2. 2
H,, (z)dx = H,(xzx)e ** dx
/]R (@) \/Q"n!/R (o)

e*’52 dt

1
oy/2mn! /R (1)

1 0 o0
- (/ Hn(t)e*fdt+/ Hn(t)etht)
oav2rn! \J oo 0

2 " e
= ——— lim H,(t)e " dt
ay/2nnl =0 Jo
2 . 2
= ——— lim (Hn,l(O) —e” Hn,l(x)).
ay/2nn! @—o0

SinceH,,_; is an odd functionH,,_; (0) = 0 and the desired statement is proved. O
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