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We develop a projection-based dimension reduction approach for partial differential equations with high-dimensional
stochastic coefficients. This technique uses samples of the gradient of the quantity of interest (QoI) to partition the
uncertainty domain into “active” and “passive” subspaces. The passive subspace is characterized by near-constant
behavior of the quantity of interest, while the active subspace contains the most important dynamics of the stochastic
system. We also present a procedure to project the model onto the low-dimensional active subspace that enables the
resulting approximation to be solved using conventional techniques. Unlike the classical Karhunen-Loève expansion,
the advantage of this approach is that it is applicable to fully nonlinear problems and does not require any assumptions
on the correlation between the random inputs. This work also provides a rigorous convergence analysis of the quantity
of interest and demonstrates: at least linear convergence with respect to the number of samples. It also shows that the
convergence rate is independent of the number of input random variables. Thus, applied to a reducible problem, our
approach can approximate the statistics of the QoI to within desired error tolerance at a cost that is orders of magnitude
lower than standard Monte Carlo. Finally, several numerical examples demonstrate the feasibility of our approach and
are used to illustrate the theoretical results. In particular, we validate our convergence estimates through the application
of this approach to a reactor criticality problem with a large number of random cross-section parameters.

KEY WORDS: representation of uncertainty, stochastic model reduction method, stochastic sensitivity
analysis, high-dimensional approximation, stochastic partial differential equations, Karhunen-Loève ex-
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1. INTRODUCTION

A large number of phenomena in science and engineering are modeled by a map from a set of input data, i.e., model
coefficients, forcing functions, boundary and initial conditions, geometry, etc., to an output quantity of interest (QoI).
This mapping is typically achieved by virtue of one or more differential and/or partial differential equations (PDEs).
However, in practice, the deterministic exact values of the input data are seldom known as they are affected by un-
certainty. Such uncertainties can be included in the mathematical model by adopting a probabilistic setting, provided
enough information is available for a complete statistical characterization of the physical system. Once the probability
distribution, either given or through a calibration procedure, of the input random data is known, the goal of the compu-
tational simulation becomes the prediction of statistics (mean, variance, covariance, etc.) of a QoI, or the probability
of some given responses of the system. In this setting, stochastic formulations are utilized to account for this random
behavior, enablinguncertainty quantification(UQ) in practical applications. In particular, the input data are modeled
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as random variables, and the underlying dynamics originally described by a set of PDEs, are naturally transformed
into stochastic parameterized PDEs (SPDEs).

In this work we focus on QoIs coming from the solution of SPDEs whose coefficients and/or forcing terms are
described by a finite dimensional random vector; either because the problem itself can be described by a finite number
of random variables or because the input coefficients are modeled as truncated random fields. We especially address
the situation where the input data are assumed to depend on a large number of random variables.

One particular problem of interest comes from the physics of a nuclear reactor. The behavior of a nuclear reactor
depends on the flow of neutrons through the reactor core and the flow of neutrons itself depends on a large number
of cross-section parameters that describe the way various types of materials (i.e., nuclear fuel, control rods, coolant,
etc.) interact with the neutron field. The number of the parameters is oftentimes in the thousands or even tenths of
thousands and recent advances in simulation techniques allow us to resolve the neutron flow for problems with realistic
complexity [1]. However, transport solvers still assume that the values of the cross sections are known exactly, while
in practice, those are measured experimentally and hence they come with a potentially wide range of uncertainty. The
neutron transport problem is an excellent candidate to motivate our gradient-based reduction approach, as it offers a
particular set of challenges: including a significantly large number of (potentially uncorrelated) input parameters with
a wide range of uncertainty, and significant computational cost associated with each realization.

Sensitivity analysis (SA) is technique for estimating the first two moments of the QoI [2]. The derivative of the
QoI with respect to the random input data is used to form a local linearization of the PDE, and then the distributions
of the input parameters are propagated through the simplified model. In essence, the expectation is approximated by
evaluating the QoI at the nominal (mean) values of the random inputs and the variance is approximated via a “sandwich
rule” using the gradient of the QoI and the covariance matrix. Computationally, SA is relatively cheap, however,
for a general nonlinear QoI, the accuracy of the linearization away from the nominal point deteriorates quickly, and
therefore is only feasible for problems where the size of the noise is relatively small. Yet, many engineering and science
applications are affected by a relatively large amount of uncertainty in the input data, and an accurate approximation
of the QoI over the full range of uncertain inputs is a desired result.

The Monte Carlo (MC) family of methods (see, e.g., [3]) for random sampling is the classical and most popular
approach for estimating statistics of QoIs that depend on the solution to a SPDE with a large number of random
inputs. When coupled with a discretization in thephysical domain, e.g., finite elements, finite difference, finite volume,
spectral, or evenh-p, the MC approximation is based on independent identically distributed (iid) realizations of the
input parameters; approximations of the expectation or other moments of QoIs are obtained by simply averaging over
the corresponding realizations of that quantity. As such, the MC method requires a deterministic solution of the PDE
for each realization of the input parameters, making it simple to implement, allows for maximal code reusability,
and is straightforward to parallelize. The resulting numerical error is proportional to(1/

√
k), wherek is the number

of realizations. The advantage of using the Monte Carlo sampling approach is that the convergence rate does not
deteriorate with respect to the number of random variables in the problem, making the method very attractive for
problems with a large number of random inputs. When solving large-scale applications for which numerical solutions
of the PDE are expensive to obtain, the exponent1/2 in the rate of convergence generates a tremendous amount
of computational work in order to achieve accurate solutions. Other ensemble-based methods such as quasi-Monte
Carlo (QMC), Latin hypercube sampling, lattice rules, orthogonal arrays, etc. (see, e.g., [4, 5] and the references
cited therein), have been devised to produce “faster” convergence rates, e.g., proportional to(log(k)r(N)/k), where
r(N) > 0 grows with the numberN of the random input variables, and thus, deteriorating convergence asN increases.

More recently, alternative approaches for approximating SPDEs, that utilize standard approximations in the phys-
ical space, and stochastic polynomial approximations, using either Galerkin projections or Lagrange interpolation,
in the probabilistic domain, have gained considerable attention. These methods are typically known as stochastic
Galerkin (SG) and stochastic collocation (SC), respectively, and both techniques exploit the regularity of the solution
to acquire faster convergence rates. Moreover, to combat the explosion in computational effort, caused by thecurse
of dimensionality, approximations are employed in sparse [6–16] or piecewise polynomial spaces [17–23]. However,
the intrusivenature of the SG approach requires solving a system of equations that couples all degrees of freedom in
the approximation to the stochastic solution. As such, as the number of random inputs grows, then the corresponding
number of degrees of freedom is prohibitively large. SC offers anonintrusive, ensemble-based approach, similar to
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Monte Carlo, for constructing a fully discrete approximation over the entire range of probabilistic inputs. Moreover,
as shown in [11, 12], the sparse grid SC approximation of SPDEs in which the input random variables come, e.g.,
from Karhunen-Lòeve -type truncations of “smooth” random fields, the convergence rate is at least sub-exponential,
and in some particular examples is independent of dimension. However, in general, when the parameter space is truly
high-dimensional and/or the solution exhibits steep gradients, sharp transitions/bifurcations, or jump discontinuities,
all SG and SC methods converge very slowly or even fail to converge. As such, to effectively exploit the fast conver-
gence of both the SC and SG approaches, it becomes necessary to reduce the parameter dimensions to a moderate size
of the most important random variables.

For a second-order stochastic process, the Karhunen-Loéve (KL) [24, 25] expansion is the most common dimen-
sion reduction technique associated with random input data of a SPDE. KL creates a lower dimensional representation
to the inputs that preserves the mean and yields an increasing accurately approximation of the variance. However, KL
requires prior knowledge of the correlation between the inputs and the existence of a suitable low-dimensional repre-
sentation is contingent upon the inputs being strongly correlated. Therefore, this approach is not feasible if the inputs
are uncorrelated and, even if a low-dimensional representation of the uncertainty exists, the relation between the er-
ror in the KL projection and the corresponding discrepancy in the statistics of the QoI is not rigorously defined for
nonlinear problems.

A new reduction approach for approximation SPDEs that depend on high-dimensional parameter spaces by com-
bining the advantages of MC sampling with SA [26–30]. Monte Carlo sampling is used to compute the sensitivities
(i.e., derivatives) of the QoI in order to construct a subspace that approximates the span of the gradient of the QoI.
Consecutively, the problem is projected onto the resulting low-dimensional subspace, thus reducing the number of
inputs and allowing for the application of QMC, SC, and SG techniques. This method is similar to an approach pro-
posed in [31, 32], where the dominant singular values of a matrix are inferred from the action of the matrix onto a set
of random Gaussian vectors, i.e., every component of the vector is sampled independently from a Gaussian distribu-
tion. However, in general, the gradient is not a linear function of the inputs and if it is represented as a product of a
matrix and a nonlinear vector function (e.g. [28]), the samples from the nonlinear function do not follow the Gaussian
distribution. Therefore, the error estimates in [31, 32] are not applicable. Furthermore, even if the gradient depends
linearly on the input parameters, these error bounds relate to the discrepancy between the computed and actual domi-
nant singular values of the matrix, while in context of SPDEs, we are interested in the error in the projection of the QoI
(which is associated with the neglected small singular values). The gradient sampling method has been successfully
applied to several problems, however, it suffers from the lack of rigorous error bounds, relating the approximation of
the gradient samples to the error in the statistics of the projected QoI.

The main contribution of this work is to develop a rigorous approach for gradient-based dimension reduction of
SPDEs with high-dimensional random inputs. In particular, we propose an approach to identify thepassivesubspace,
i.e., where the QoI is constant or can be accurately (within small error tolerance) approximated by a constant, and then
project the problem onto the (active) orthogonal complement, subspace. Moreover, we also derive rigorous bounds
relating the error in the statistics of the projected QoI to the error in the approximation of the gradient samples. In
the case that the QoI is the variance of a vector that depends linearly on the inputs, our approach is equivalent to
Karhunen-Lóeve expansion. However, our results extend for higher statistical moments, fully nonlinear problems,
and does not require any assumptions on the correlation between the random inputs. Our analysis reveals, that in
the worst case, the convergence rate is proportional to(1/k) and independent from the dimensionality. As such, for
problems with low-dimensionalactivesubspace, the method has definite advantage over the classical Monte Carlo
sampling. Moreover, as our numerical examples reveal, this linear rate of convergence is sometimes an overestimate
and a suitable projection space can be identified with even fewer samples.

The rest of this paper is organized as follows, in Section 2 we define the abstract problem setting and introduce
the mathematical problem and the main notation used throughout. In Section 3 we present the analysis that relates the
error in the projection of the QoI to the error in the approximation of the gradient. In Section 4 we present a numerical
sampling-based algorithm for approximation of the gradient of the QoI and provide the rigorous error analysis of
our approach. In Section 5 we present three numerical examples where we apply our method to: a KL expansion
involving random matrices (see Section 5.1); a highly reducible random parameter problem (see Section 5.2); and a
neutron transport problem with uncertain cross sections (see Section 5.3).
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2. PROBLEM SETTING

We begin by following the notation in [11, 12, 33] and letD ⊂ Rd, d = 1, 2, 3, be a convex bounded polygonal
domain inRd, d = 1, 2, 3, and(Ω,F , P ) a complete probability space. We letL be a differential operator, linear or
nonlinear, defined on a domainD, which depends on some coefficient(s)γ(ω, x) with x ∈ D, ω ∈ Ω. HereΩ is the
set of outcomes,F ⊂ 2Ω is theσ algebra of events, andP : F → [0, 1] is a probability measure. We are interested in
the following stochastic boundary value problem: findu : Ω×D → Rm such thatP -almost everywhere inΩ

L(γ)(u) = 0 in D, (1)

equipped with suitable boundary conditions. TypicallyL defines a physical system by virtue of ordinary or partial
differential equations, however, the analysis presented in this work is agnostic with respect to any specific structure in
the model. We denote byW (D) a Banach space of functionsv : D → R and define, forq ∈ [1,∞], the stochastic
Banach spaces

Lq
P (Ω)⊗W (D) :=

{
u : Ω×D → Rm

∣∣∣∣
∫

Ω

‖u‖q
W (D) dP (ω) < +∞

}
(2)

We are particularly interested in the case whenq = 2 as we assume the underlying stochastic input data are chosen
so that the corresponding stochastic partial differential equation (1) is well-posed so that it has an unique solution
u(ω, x) ∈ L2

P (Ω) ⊗W (D), consisting of Banach-space valued functions that have finite second moments. Finally,
we note that in this setting the solutionu can either be a scalar or vector-valued function depending on the system of
interest.

We also assume that the stochastic coefficientsγ(ω, x) depend on a finite-dimensional real-valued vector of
independent random variablesy = [y1(ω), . . . , yN (ω)] : Ω → RN with N ∈ N+. Then, the solutionu of (1)
depends on the realizationω ∈ Ω through the value taken by the random vectory, i.e.,u = u(ω, x) = u(y(ω), x).
Below we give an example of the typical finite-dimensional noise decomposition. However, we note that this is not an
assumption of our sampling approach or the accompanying convergence analysis.

Example 1. (Stochastic input data)
In many applications, the stochastic input data may have a simple piecewise random representation whereas, in other
applications, the coefficientsa in (1) may have spatial variation that can be modeled as a correlated random field,
making them amenable to description by a Karhunen-Loève (KL) expansion [24, 25]. In practice, one has to truncate
such expansions so that they are of the form

γ(ω, x) = γ(y(ω), x) = γ0(ω, x) +
N∑

n=1

yn(ω)bn(x), (3)

where the numberN terms retained depends on the regularity of the given covariance function and the desired
accuracy of the expansion. Please see [11, Section 2.1] for detailed descriptions of both types of noise.

In what follows, we denote byΓn ≡ yn(Ω) ⊂ R the image of the random variableyn, then setΓ ≡ ∏N
n=1 Γn ≡

y(Ω), and assume that the components of the real-valued random vectory = [y1(ω), . . . , yN (ω)] : Ω → RN have a
joint probability density function (PDF)

ρ : Γ → R+ with ρ(y) ∈ L∞(Γ),

whereρ(y) =
∏N

n=1 ρn(yn) if the random variables are independent. Therefore, the probability space(Ω,F , P ) is
equivalent to(Γ,B(Γ), ρ(y)dy), whereB(Γ) is the Borelσ-algebra onΓ andρ(y)dy is the finite measure of the
random vectory. In this setting the stochastic Banach spaceLq

P (Ω) is equivalent toLq
ρ(Γ), consisting of functions on

Γ with respect to the measureρ(y)dy.
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Therefore, the solution of the state equation (1) is an unique square integrable functionu = u(y, x) ∈ L2
ρ(Γ) ⊗

W (D), for anyy ∈ Γ andx ∈ D. The goal of this effort is to construct statistical information related to an output
QoI, as a function of the random vectory = [y1, . . . , yN ], by evaluating the map

Q = Q(u(y, x)) = Q(y) : Γ×D → R, (4)

that we assume depends on a high-dimensional subspaceΓ ⊂ RN . Here, by high-dimensional we really mean that
N = dim(Γ) ∼ O(100).

Remark 1. (Support of the joint PDF)
Even though the support ofΓ ⊂ RN may be bounded, we assume thatρ(y) is defined over all ofRN . If Γ is a bounded
domain then we setρ(y) = 0 outside the regionΓ. We note that the is strictly an artifact of the projection techniques
described in Section 2.1 and the analysis presented in Section 4, and has no effect in the main convergence rates
described in Theorems 2 and 3.

Moreover, in this effort we focus on complex stochastic problems defined by (1), where, given a sampley(ω) ∈ Γ
evaluating the QoI (4) is computationally expensive. However, we assume that we can compute the gradient ofQ(y)
at a specific random vectory, denoted∇Q(y), with comparable cost to the computation of the value ofQ(y). We
remark that in this effort the gradient operator∇ ≡ ∂/∂y denotes the gradient with respect toy only. Finally, we
focus on constructing a numerical approximation of the expected value of the QoI, namely

E[Q] =
∫

Γ

Q(y)ρ(y)dy, (5)

however, higher order statistics of the QoI and the gradient can also be approximated by replacingQ(y) and∇Q(y)
with

Qk(y) = (Q(y)− E[Q])k, and∇Qk(y) = k(Q(y)− E[Q])k−1∇Q(y), k ∈ N+,

respectively. Note from Remark 1 that sinceρ(y) = 0 when y 6∈ Γ, we can extendQ(y) arbitrarily outsideΓ
[i.e., defineQ(y) = 0 for y 6∈ Γ] and thus the integral (5) can be defined over all ofRN .

Next we give an example problem posed in this setting:

Example 2. (Neutron transport with stochastic cross sections)
In one spatial dimension, i.e.D = [0, 1], thek-eigenvalue transport problem in strong form with finite uncertainty in
the capture, scatter, and fission cross sections, denotedσc(y, x), σs(y, x) andσf (y, x) respectively, is given by [34]

µ
∂ψ

∂x
(y, x, µ) + σT (y, x)ψ(y, x, µ) = σs(y, x)φ(y, x) +

ν

k(y)
σf (y, x)φ(y, x) for a. e.x ∈ D, θ ∈ [0, π], (6)

whereµ = cos(θ), σT (y, x) = σc(y, x) + σs(y, x) + σf (y, x) measures the uncertainty in the total cross-section,
ψ(y, x, µ) is the random angular flux measuring the uncertainty in the density of neutrons at locationx ∈ D in the
directionθ, φ(y, x) = 1/2

∫ 1

−1
ψ(y, x, µ)dµ is the uncertainty in the total number of neutrons at locationx, andν

is the average number of neutrons emitted after a fission reaction.
If we let the cross sections have a finite stochastic representation similar to(3) that is uniformly bounded and

coercive, i.e., for the total cross sectionσT (y, ·) there existsσTmin > −∞ andσTmax < +∞ such that

P
[
ω ∈ Ω : σTmin ≤ σT (y(ω), x) ≤ σTmax ∀x ∈ D

]
= 1, (7)

and similarly for the fission, capture, and scatter cross sections, then(6) satisfies all the above assumptions with
W (D) = L2(H1(D); 0, π). Of course, in this setting, the operatorL from (1) corresponds to the eigenvalue problem
(6), the coefficients correspond to the cross sections, and the QoI described by(4) is the stochastic eigenvaluek(y).
Similar to (5) we are interested in computing the expected value ofk-effective, whose value determines whether a
reactor is sub-critical,E[k] < 1, super-critical,E[k] > 1, or critical, E[k] = 1.
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When the amount of uncertainty is large, that isN = dim(Γ) is high-dimensional and the range of each parameter
is large, and if calculating the QoI (4) is costly (e.g., see Example 2), then approximating (5) becomes computation-
ally infeasible. Any deterministic quadrature approach, e.g., tensor products, sparse grids, quasi-Monte Carlo, latin
hypercube sampling, etc. will suffer from thecurse of dimensionalitysince the rates of convergence depend on the
dimensionN . Of course, we could directly apply a random sampling approach, such as Monte Carlo, however, the
convergence rate is quite slow and a high level of accuracy is achieved only with a substantial amount of function eval-
uations. As such, the goal of this effort is to reduce the amount of uncertainty by accurately quantifying theÑ ¿ N
most active dimensions having the largest influence on statistics of the QoI. Then, one can apply any stochastic
polynomial approximation technique to approximateQ(y), e.g., spectral-Galerkin, stochastic collocation, piecewise
locally adaptive, etc., or a deterministic sampling technique to compute (5) directly. To accomplish such stochastic
dimension reduction we utilize a random sampling procedure, however, instead of samplingQ(y) directly we instead
sample information from the gradient∇Q(y). In doing so, we analytically show that this approach converges at least
linearly in the number of samples when approximating the expected value of the QoI given by (5).

2.1 Active and Passive Subspaces

In general, the dimensionN of the random domainΓ may be very largea priori, however, the random parameters
y1 . . . , yN typically do not all have equal influence on the desired QoI. For example, in many practical applications, the
QoI is close to invariant under perturbations ofy with arbitrary size for most directions. The largest possible subspace
over which the QoI exhibits constant or near-constant behavior is what we define as thepassivesubspace, denoted
Λp ⊂ RN . Moreover, we also define theactivesubspaceΛa ⊂ RN as the orthogonal complement ofΛp, i.e.Λa ⊥ Λp

such that everyy ∈ Λa ⊕ Λp = RN can be decomposed asy = ya + yp with ya ∈ Λa, yp ∈ Λp and〈ya, yp〉 = 0.
Finally, we define the orthogonal projection operatorsFΛa andFΛp so thatya = FΛay andyp = FΛpy.

From our assumption in Section 2 thatQ(y) is approximately invariant under perturbations ofy in the direction of
yp ∈ Λp, we can define the projection of the QoI (4) onto the subspaceΛa asQ̂ : FΛaΓ → R. Special consideration
has to be given to the case whenFΛaΓ 6⊂ Γ, sinceQ̂ has to be defined for valuesya ∈ FΛaΓ with ya 6∈ Γ, in which
caseQ(ya) may not have a trivial extension, e.g., the PDE may be ill-posed. A visual representation of the projection
problem can be observed in Fig. 1. Sinceya ∈ FΛaΓ implies the existence ofy ∈ Γ so thatFΛay = ya, and sinceQ
is assumed to be approximately invariant in directionsyp = y − ya = FΛpy ∈ Λp, we defineQ̂(ya) as

Γ

y /∈ Γ

y ∈ Γ

y ∈ Γ

Λ
a

y
a

∈ Γ

y
a /∈ Γ

y ∈ Λ
a

∩ Γ

FIG. 1: A two-dimensional simple illustration of a bounded supportΓ of the probability density function as well as
the projection on the low dimensionalactivesubspaceΛa.
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Q̂(ya) =





Q(ya), ya ∈ Γ,
0, ya + yp 6∈ Γ ∀yp ∈ Λp,
Q(ya + yp), for anyyp ∈ Λp such thatya + yp ∈ Γ.

(8)

By this definition,Q(ya + yp) ≈ Q̂(ya) for all yp ∈ Λp and we can project (5) ontoΛa by virtue of

∫

RN

Q(y)ρ(y)dy =
∫

Λa

∫

Λp

Q(ya + yp)ρ(yp + ya)dypdya

≈
∫

Λa

Q̂(ya)
∫

Λp

ρ(ya + yp)dypdya =
∫

Λa

Q̂(ya)ρ̂(ya)dya, (9)

where

ρ̂(ya) =
∫

Λp

ρ(ya + yp)dyp (10)

is the projected probability density function defined overΛa. Therefore, our goal is to construct suitableΛp and, using
(8)–(10), efficiently project the high-dimensional integral (5) onto the low dimensional subspaceΛa, with dim(Λa) ¿
N , such that ∣∣∣∣

∫

RN

Q(y)ρ(y)dy −
∫

Λa

Q̂(ya)ρ̂(ya)dya

∣∣∣∣ ≤ ε, (11)

with ε a predefined error tolerance. The advantage of working with the lower dimensional projected integral is that
we can compute (9) using various collocation or polynomial approximation techniques. However, assuming we are
givenΛa andΛp, the next remark describes specifically how we project the PDF multivariate Gaussian distribution.

Remark 2. (Projecting a Probability Density Function)
For the specific case that the PDF is a multivariate Gaussian distribution, i.e.,ρ(y) = [e−1/2‖y‖2 ]/[(2π)N/2], we
want to project the PDF on the low-dimensional spaceΛa. We can exploit the orthogonality ofΛa andΛp and obtain

ρ̂(ya) =
∫

Λp

ρ(ya + yp)dyp =
e−

1
2‖ya‖2

(2π)dim(Λa)/2
.

Similar result holds for other distributions such as uniform distribution on anl2 ball centered at the origin and
truncated Gaussian distribution (so long as the truncation is done at the boundary of anl2 ball). A more general
distribution is not trivial to project and one may be unable to derive a density function in closed form. In many prac-
tical applications, even if computing realizations of the QoI, given by(4), are computationally expensive, computing
samples of the random vectory may be cheap. Hence, we can use these samples to approximateρ̂ by an integral over
a small regionVya aroundya, i.e., for anyỹa ∈ Λa ∩ Vya

ρ̂(ya) ≈ 1
|Vya |

∫

Λa∩Vya

∫

Λp

ρ(ỹa + yp)dypdỹa =
1

|Vya |
∫

RN

IVya (y)ρ(y)dy, (12)

where|Vya | indicates the multidimensional volume ofVya ⊂ Λa and

IVya (y) =
{

1, FΛay ∈ Vya ,
0, o.w.

Without considering the computational cost, assume we can generate a large number of samples{yi}k
i=1, then (12)

can be approximated by a Monte Carlo method. Furthermore, this sampling technique can also be useful to find the
value ofQ̂(ya), whenya 6∈ Γ. That is, ifIV (yi) = 1 and ifya +FΛpyi ∈ Γ, thenQ̂(ya) = Q(ya +FΛpyi). We note
that the details of such a sampling approach are described in Section 4.
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3. THE GRADIENT AND THE ERROR

To accomplish our objective of constructingΛp andΛa we utilize random samples of the gradient of the QoI, denoted
{∇Q(yi)}k

i=1, described in Section 4. First, we need a result regarding the relationship between the errorε in our
approximation (11) and the gradient of the QoI. In what follows〈·, ·〉 denotes the standard inner product inRN .

Theorem 1. (Gradient bound)
Let subspacesΛa, Λp ⊂ RN be such thatΛa ⊥ Λp and Λa ⊕ Λp = RN . Furthermore, suppose the probabilistic
domainΓ ⊂ RN is convex,Q(y) is continuously differentiable overΓ, and define for everyy ∈ Γ the setΛp(y) =
{yp ∈ Λp : y + yp ∈ Γ}, Then, if there exists a probability density functiong : RN → R+, andε ≥ 0, that satisfy
either

|Q(v + w)−Q(v)| ρ(v + w) ≤ εg(v + w), ∀v ∈ Γ, ∀w ∈ Λp(v) (13)

or ∣∣∣∣
∫ 1

0

〈∇Q(v + sw),w〉 ds

∣∣∣∣ ρ(v + w) ≤ εg(v + w), ∀v ∈ Γ, ∀w ∈ Λp(v) (14)

or
|〈∇Q(v + sw), w〉| ρ(v + w) ≤ εg(v + w), ∀v ∈ Γ,∀w ∈ Λp(v),∀s ∈ [0, 1], (15)

then we have that ∥∥∥Q(y)− Q̂(FΛay)
∥∥∥

L1
ρ(RN )

=
∫

RN

∣∣∣Q(y)− Q̂(FΛay)
∣∣∣ ρ(y)dy ≤ ε (16)

as well as ∣∣∣∣
∫

RN

Q(y)ρ(y)dy −
∫

Λa

Q̂(ya)ρ̂(ya)dya

∣∣∣∣ ≤ ε, (17)

where the operator witĥQ(ya) andρ̂(ya) given by(8) and (10) respectively.

Proof. We begin by noting that
∣∣∣∣
∫

RN

Q(y)ρ(y)dy −
∫

Λa

Q̂(ya)ρ̂(ya)dya

∣∣∣∣ ≤
∫

RN

∣∣∣Q(y)− Q̂(FΛay)
∣∣∣ ρ(y)dy,

and therefore (16) implies (17). Using the convexity ofΓ and the differentiability ofQ(·) we apply the Fundamental
Theorem of Calculus to the left-hand-side of (13) which yields

|Q(v + w)−Q(v)| ρ(v + w) =
∣∣∣∣
∫ 1

0

〈∇Q(v + sw),w〉 ds

∣∣∣∣ ρ(v + w) ≤
∫ 1

0

|〈∇Q(v + sw), w〉| ρ(v + w)ds.

Therefore, (15) implies (14), which in turn implies (13) and thus all we need to show is that (13) implies (16). To get

this, we assume (13), we defineD(y) =
∣∣∣Q(y)− Q̂(FΛay)

∣∣∣ ρ(y) as the integrand of (16) and we consider the four

possible scenarios fory and the corresponding projectionFΛay (see Fig. 1 for a visual of these cases):

Case 1:if y 6∈ Γ, thenρ(y) = 0 and thusD(y) = 0;

Case 2:if y ∈ Γ ∩ Λa, thenQ̂(FΛay) = Q(FΛay) = Q(y) and thus,D(y) = 0;

Case 3:if y ∈ Γ, y 6∈ Λa andya = FΛay ∈ Γ, theny − ya ∈ Λp(ya), and we can apply condition (13) with
v = ya andw = y − ya, to get thatD(y) ≤ εg(y); and

Case 4:if y ∈ Γ, y 6∈ Λa, andya = FΛay 6∈ Γ, then by definition (8), there isyp ∈ Λp so thatya + yp ∈ Γ and
Q̂(ya) = Q(ya +yp). Sincey−ya−yp ∈ Λp(ya +yp), we can apply condition (13) withv = ya +yp

andw = y − ya − yp, to also get thatD(y) ≤ εg(y).
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As such, in all cases fory we have thatD(y) ≤ εg(y), and therefore,
∫

RN

|Q(y)− Q̂(FΛay)|ρ(y) ≤
∫

RN

εg(y)dy = ε.

Remark 3. (Global support)
If Γ = RN , thenya will always be inΓ and we do not need to consider the fourth case of Theorem 1. Therefore,
conditions (13)–(15) can be weakened, and need only hold forv ∈ Λa (as opposed tov ∈ Γ).

Remark 4. (Alternative condition)
Condition (15) is equivalent to

| 〈∇Q(y + yp), syp〉 |ρ(y + syp) ≤ εg(y + syp), ∀y ∈ Γ, ∀yp ∈ Λp(y), ∀s > 1, (18)

which in turn implies (16) and (17). We will utilize(18) in the sampling algorithm described in Section 4, since for
pointy and corresponding value of∇Q(y), we can examine all values ofs by consideringρ(·) andg(·) only. This is
unlike conditions (14) and (15) that require knowledge of∇Q(y) for a range of the uncertaintiesya + syp.

Corollary 1. (True dimension)
Let Λp

null =
{
v ∈ RN : 〈v,∇Q(y)〉 = 0, ∀y ∈ Γ

}
, then conditions (14) and (15) are satisfied withε = 0 for any

arbitrary functiong : RN → R+. Therefore, we can projectQ : Γ × D → R without loss of information and the
actual dimension of the QoI isN − dim(Λp

null).

Corollary 2. (Low-dimensional surrogate)
Suppose there exists a functionI(ya) that approximateŝQ(ya) in the low-dimensional spaceΛa. ThenI(FΛay)
approximatesQ(y) and satisfies the following estimate:

‖I ◦ FΛa −Q‖L1
ρ(RN ) ≤ ‖I − Q̂‖L1

ρ̂(Λa) + ‖Q̂ ◦ FΛa −Q‖L1
ρ(RN ).

Our main focus remains the approximation of the integral (5), however, Corollary 2 allows us to utilize the low-
dimensional spaceΛa to create a surrogate model forQ(y). Since the dimension ofΛa is small relative toΓ, we
can apply various stochastic polynomial methods, such as spectral Galerkin or collocation approximations. In the
next section we explain how our our gradient-based approach, for stochastic dimension reduction, can be viewed as a
generalization to the classic finite-dimensional Karhunen-Loéve expansion [24, 25].

3.1 Relationship to the Finite-Dimensional Karhunen-Lo éve Expansion

Consider the case where the components ofy ∈ RN are identically and independently distributed as normalized
Gaussian variables, i.e.,y1 ∈ N(0, 1), . . . , yN ∈ N(0, 1) with ρ(y) = e−(1/2)‖y‖2/(2π)N/2. Next, we define

u(y) = LT y, and Q(u(y)) = ‖u‖2 = yT LLT y = yT Cy, (19)

whereC = LLT is the covariance matrix ofu and the integral of the QoIQ is the variance ofu. Here we assumeC
is nonsingular, that is, the actual dimension of the problem is indeedN . Given the simple expression for QoI allows
us to easily find the gradient ofQ(y) as

∇Q(y) = 2Cy. (20)

From Theorem 1 and Remark 3, we seekΛa andΛp that minimizeε ≥ 0. First, we consider the simplest case where
dim(Λp) = 1. In this case, we want to findyp that minimizes (14), that is,

min
Λp

∣∣∣∣
∫ 1

0

〈∇Q(ya + syp), yp〉 ds

∣∣∣∣ ρ(ya + yp), ∀yp ∈ Λp andya ⊥ yp. (21)

Volume 5, Number 1, 2015



58 Stoyanov & Webster

Substituting (21) into (20) yields

min
Λp

∣∣∣∣
∫ 1

0

〈∇Q(ya + syp), yp〉 ds

∣∣∣∣ ρ(ya + yp) = min
Λp

∣∣∣∣
∫ 1

0

2(yp)T Cya + s 2(yp)T Cypds

∣∣∣∣ ρ(ya + yp)

= min
Λp

∣∣∣∣2(yp)T Cya +
1
2
2(yp)T Cypds

∣∣∣∣ ρ(ya + yp).
(22)

The minimum of (22) is achieved whenΛp is the eigenspace that is associated with the smallest eigenvalue ofC,
i.e.,Cyp = λminyp. SinceC is symmetric positive definite,ya ⊥ Cyp, and therefore, we get that

|2(ya)T Cyp + (yp)T Cyp|e
− 1

2‖ya+yp‖2

(2π)N/2
= (yp)T Cyp e−

1
2‖ya+yp‖2

(2π)N/2

= λmin‖yp‖2 e−
1
2‖ya+yp‖2

(2π)N/2
≡ λming(y). (23)

Since
∫

g(y)dy = 1, if we apply Theorem 1 with condition (14) andε = λmin, the final error associated with reducing
the uncertainty domain by one dimension is bounded byε. By extrapolating this result, we can reduce the dimensions
recursively and deduce that the passive subspace is the span of the eigenvectors ofC associated with the smallest
eigenvalues. Moreover, the theoretical error bound is the sum of the neglected eigenvalues. This result is equivalent
to the classical finite-dimensional Karhunen-Loéve expansion, however, our projection approach extends to problems
with far more complex structure than linear functionsu, quadratic functionalsQ(u), and Gaussian random variables
y [24].

4. THE SAMPLING APPROACH AND ERROR ANALYSIS

In practice, we seldom have analytical form of the gradient of the QoI (4), and therefore, we have to create an approx-
imation to bothΛp andΛa. More importantly, the possible choices forΛp andΛa may not be unique and so we define
Λa andΛp to be any two subspaces that satisfy any of the condition in Theorem 1. Without loss of generality, we will
focus our attention on the condition (18), defined in Theorem 1, however, our approach and analysis extends to condi-
tions (14) and (15) as well. Furthermore, we want to project the QoI on a subspace with smallest possible dimension.
As such, we attempt to discover subspaces such thatΛa has the smallest possible dimension, or alternatively,Λp has
the largest possible dimension.

To accomplish these goals we propose a Monte-Carlo-based random sampling approach. That is, given a desired
toleranceε > 0, we takek random samples, i.e.,{yi}k

i=1 ∈ RN , where eachyi is independently sampled from distri-
bution with probability densityρ. For each sample, we compute∇Q(yi) and use the gradients to find a decomposition
that approximatesΛp andΛa. Since we cannot analytically verify condition (18) over the entire domain, we weaken
the requirement so that it holds only with respect to the computed samples{∇Q(yi)}k

i=1. Hence we need a procedure
to formΛa andΛp from an already computed set of gradient samples.

Our specific approach for forming this approximation is problem dependent. We require the definition of a map
J : RN → RN that associates a finite subsets ofRN with a subspace ofRN . That is, letT be a finite set of vectors in
RN andΛa = J(T ), a subspace ofRN , so that ifΛp is the orthogonal complement ofΛa. Then (18) is satisfied for
all ∇Q(yi) ∈ T . Of course, the structure of the mapJ depends onε andg(·). One possible choice is to take

J(T ) = span{∇Q(yi)}yi∈T , (24)

which guarantees (18) remains valid for allε > 0. However, it is more desirable to choose the mapJ that returns
a subspace with smallest possible dimension. Hence, a more practical approach would be to use a procedure that
weights∇Q(yi) and returns the subspace spanned by only some of the samples. A common approach to this type
of problem is to look at different eigenvalue problems. Below, we give two examples of specific choices for the map
J(T ). Here we suppose we are given a set of vectorsT and toleranceε, and we wish to construct the mapJ(T ) that
decomposesRN so that condition (14) or (18) is satisfied for allyi ∈ T .
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Example 3. (Compact support and the choice ofJ(T ))
Suppose the PDFρ has compact support inRN , i.e., there exists a constantr such thatρ(y) = 0, ∀‖y‖ > r. In
this case, if we letg(y) = ρ(y) the (18) is satisfied for all‖y‖ > r, regardless ofε, and therefore, we only need to
consider‖yp‖ ≤ r or s ≤ r/‖yp‖. As such, we arrange the vectors∇Q(yi) into the columns of a matrixH. We
defineΛa to be the space spanned by thel dominant singular vectors ofH, wherel is chosen so that the (l + 1)st
dominant singular valueλl+1 satisfies

rλl+1 ≤ ε.

Then, if we takeyp ⊥ Λa such that‖yp‖ ≤ r and consider〈∇Q(yi), syp〉, which is largest whens = r/‖yp‖, we
get that

〈∇Q(yi), syp〉 ≤
〈
∇Q(yi),

r

‖yp‖yp

〉
≤ rλl+1 ≤ ε.

Therefore, condition (18) is satisfied withΛa = J(T ) for all yi ∈ T .

Example 4. (Finite-dimensional Karhunen-Lóeve expansion and the choice ofJ(T ))
Similar to Section 3.1 we letQ(y) = yT Cy andρ(y) = e−(1/2)‖y‖2/(2π)N/2. We want to construct a procedure
that will map a set of vectorsT to a subspace, with smallest possible dimension, that satisfies condition (14). That is,
for λ ∈ R+:

|< ∇Q(yi),yp >| ≤ 2 λ‖yp‖2, ∀yp ⊥ J(T ), ∀yi ∈ T. (25)

First, considerΛp = J(T )⊥, and observe that thespan{∇Q(yi)}⊥ satisfies (25) for allλ ≥ 0, and thus,
span{∇Q(yi)}⊥ ⊂ Λp. Second, we need to classify thespan{∇Q(yi)}. Letv ∈ span{∇Q(yi)}, i.e.,

v =
m∑

i=1

ci∇Q(yi) ≡ Hc, (26)

wherem = card(T ), c ∈ Rm andH is the matrix with columns∇Q(yi). Substituting(26) into (25) and observing
thatyp = (< v, yp >/‖v‖2)v, we have that

|< ∇Q(yi),Hc >| ≤ 2λ |< yi,Hc >| . (27)

By lettingE be the matrix with columnsyi (27) reduces to the generalized eigenvalue problem

HT Hc = 2λET Hc, (28)

where the eigenvalues{λl}m
l=1, placed in descending order, are real and positive. We then takeJ(T ) to be the space

associated withHcl, wherecl, l = 1, . . . , Na ¿ N , are theNa dominant eigenvectors. To select the cutoff value
of λ, we use the eigenvectors associated with the dominant eigenvalues. LetFJ(T )⊥ be the operator for orthogonal
projection ontoJ(T )⊥ and multiply both sides of (25) byρ(yi)

|< ∇Q(yi),yp >| ρ(yi) ≤ 2λ

∫
‖FJ(T )⊥ξ‖2ρ(ξ)dξ

‖yp‖2ρ(yi)∫ ‖FJ(T )⊥ξ‖2ρ(ξ)dξ
,

which matches condition (14) withg(y) = ‖FJ(T )⊥y‖2ρ(y)/
∫ ‖FJ(T )⊥ξ‖2ρ(ξ)dξ and

ε = 2λ

∫
‖FJ(T )⊥ξ‖2ρ(ξ)dξ = 2λ (N − n) , ⇒ λ =

ε

2 (N − n))
, (29)

wheren = dim(J(T )). We can use the estimate (29) to select a cutoff value forλ, however, we should note that when
dim(J(T )) ¿ N and the eigenvalues ofH decay very fast, (29) is a big overestimate.
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Given an appropriate mappingJ(T ), we consider thek samples{∇Q(yi)}k
i=1. We split the samples into two

groups. First we look for the smallest subset of the samplesT̃ ⊂ {∇Q(yi)}k
i=1 such thatJ(T̃ ) is a subspace that

satisfies condition (18) not only with respect tõT but also with respect toall other samples. Thus, the samples inT̃
we callessentialand the remaining ones are the set of theover-samples. In nontechnical terms, theessentialsamples
are used to identify the dynamics of the QoI and since they are randomly selected, it is possible that they fail to capture
all aspects of the behavior ofQ(y). Theover-sampleshad an opportunity to discover any missing dynamics and no
such dynamics were found, hence the moreover-sampleswe have, the more likely it is that we have identified the
full behavior of the QoI. Theessentialsamples are needed to identify the approximatepassiveandactivesubspaces,
while theover-samplesare related to the confidence that we have in the approximation. This relationship is quantified
in Theorems 2 and 3.

Algorithm 1 summarizes the sampling procedure, whereε is the desired tolerance, and at iterationk we haveΛp
k,

Λa
k anddk as, respectively, the approximatepassiveandactivesubspaces and the number ofover-samples.

Algorithm 1: Approximate the passive subspace.

SetΛp
0 = RN , Λa

0 = {0}, d0 = 0 and the tolerance,ε.
for k = 1, 2, . . . , do

Sample the random vectoryk ∈ Γ with PDFρ(y), and evaluate the gradient at the sample point, i.e.,
∇Q(yk).
if (18) is satisfied using∇Q(yk) with Λp

k−1, Λa
k−1 then

SetΛp
k ← Λp

k−1 andΛa
k ← Λa

k−1 and incrementdk = dk−1 + 1.
else

if (18) isnot satisfied using∇Q(yk) with Λp
k−1, Λa

k−1 then

DefineT =
{

T ∈ 2{y
i}k

i=1 : J(T ) satisfies (18)∀yi

}
andT̃ ∈ T with card(T̃ ) ≤ card(S),

∀S ∈ T .
Set the active subspaceΛa

k ← J(T̃ ) with Λp
k being its orthogonal complement.

Setdk = k − card(T̃ ).
endif

endif
if dk is sufficiently largethen

Stopthe iteration and use projection (9) withΛa = Λa
k andΛp = Λp

k to reduce the dimension of the
problem.

endif
endfor

Obviously, Algorithm 1 requires a proper convergence criterion with respect to the number ofover-samplesdk,
More importantly, recall from (11) that what we really want to know the error we commit in approximating the
expectation of our QoI, when using our projection into the active subspaceΛa. However, when using the sampling
approach described by Algorithm 1 we construct an approximationΛa

k and thus, we are interested in the error at the
kth iteration, defined by

ek =

∣∣∣∣∣
∫

RN

Q(y)ρ(y)dy −
∫

Λa
k

Q̂k(ya)ρ̂k(ya)dya

∣∣∣∣∣ , (30)

whereρ̂k(ya) =
∫
Λp

k
Q(ya +yp)dyp andQ̂k denotes the projection of the QoI (4) onto the subspaceΛa

k, andQ̂k(ya)
is defined by settingΛp = Λp

k in (8). Next, using (30) we present two theoretical results that describe the probability
of finding the active subspaceΛa

k, using Algorithm 1, and the distribution of the error with respect to the number of
samples. These are given in the following two theorems.
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Theorem 2. (Probability of failure)
Given a realization of Algorithm 1 with toleranceε andek described by (30), there is a sequence of numbersmk ∈ R
such that the discrete (or boolean) probability measure satisfies

P(ek > ε) ≤ (1−mk)dk , (31)

wheredk is the number of over-samples at stepk. Moreover, there exists ann ∈ N+ that is independent from the
realization of the samples (i.e., it only depends on the properties of∇Q(y) and notyi), so that ifk < n thenmk = 0
and ifk ≥ n thenmk > 0.

Proof. If mk = 0, then (31) is the trivial statement that a probability of an event is bounded by1. ConsiderΛa with
smallest dimension that will satisfy condition (18) and let this dimension ben = dim(Λa). The largest subspace
that the mappingJ can return is given by (24) and hence dim(Λa

k) ≤ card(T ) ≤ k. Therefore, ifk < n, thenΛa
k

necessarily fails (18) and hence Theorem 1 does not apply. Therefore, we can make only the trivial statement

P (ek > ε) ≤ 1 = (1− 0)dk = (1−mk)dk .

If k < n, then (31) holds only for the trivial choice ofmk = 0.
Supposek ≥ n and define

Zk = {y ∈ Γ : there is a pairs > 1 andyp ∈ Λp
k such thaty + yp ∈ Γ and condition (18) fails}

and let

pk = P (Zk) =
∫

Zk

ρ(y)dy.

At iterationk, if pk = 0, then condition (18) holds but for a set of zero probability, hence according to Theorem 1
ek ≤ ε. The probability ofek > ε given thatpk = 0 is in fact zero

P (ek > ε|pk = 0) = 0,

and therefore, (31) will be true for any0 < mk ≤ 1.
Supposepk > 0 and then consider the number ofover-samples. By construction ofΛp

k, none of theover-samples
belong toZk. Therefore, we havedk number ofover-samplesall of which were randomly and independently selected
outside of the regionZk. The probability of such even is(1− pk)dk , therefore,

P (ek > ε|pk > 0) ≤ (1− pk)dk .

Thus, we can selectmk = pk.

From Theorem 2 it follows that if for large enoughk, mk are uniformly bounded away from zero, then the sampling
method has exponential convergence. This means that in the best case, Algorithm 1 could exhibit the fast convergence
of the collocation methods, without thecurse of dimensionality. However, in general,mk depends onZk and thus the
distribution of the samples{yi}k

i=1 for eachk, and the correspondingmk is a random variable and it is possible for
the sequence ofmk to tend to zero for very largek. We have to consider the probability that the error will exceed the
toleranceε with respect to the probability distribution ofmk.

Theorem 3. (Distribution of the error)
Suppose there is a constantM such that for any arbitrary subsetG ⊂ RN

∣∣∣∣
∫

G

Q(y)ρ(y)dy

∣∣∣∣ ≤ M

∫

G

ρ(y)dy

Then if k ≥ n andek > ε we have the following bounds, for the expected valueE[ek − ε] ≤ M/(dk + 1), and the
varianceVar[ek − ε] ≤ M2/(dk + 1)2, with respect to the distribution of the number of samples.
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Proof. Let dµk be the probability measure associated with the distribution ofmk at stepk. Following our construction
in Theorem 2, the measurepk of the set where condition (18) fails is at mostmk, therefore, the error in the approx-
imation to the QoI is bounded byMmk. Furthermore, according to (31) the probabilityP (ek > ε) is bounded by
(1−mk)dk . Therefore,

E[ek − ε] ≤ M

∫ 1

0

x(1− x)dkdµk.

The integrand is bounded and attains its maximum atx = 1/(dk + 1) and hence we have the bound

E[ek − ε] ≤ M

(
1− 1

(dk+1)

)dk

dk + 1
≤ M

dk + 1
.

In an analogous way we have that

Var[ek − ε] ≤ M2

∫ 1

0

x2(1− x)2dkdµk − (E[ek − ε])2 ≤ C2

(
1− 1

(dk+1)

)2dk

(dk + 1)2
≤ M2

(dk + 1)2
.

Remark 5. (Comparisons to Monte Carlo sampling)
Assume that we want to estimate(5) to error toleranceε. The computational cost associated with classical Monte
Carlo sampling isO(1/ε2) evaluations ofQ(y), and the estimate is independent from the dimension, regularity or
structure ofQ(y).

Our approach makes a couple of assumptions. Theorem 1 assumes continuous differentiability and throughout this
paper we assume the existence of a low dimensional active subspace (which may depend on onε, e.g., see Section 5.3),
while Monte Carlo sampling cannot take advantage of such structure. However, Algorithm 1, according to Theorem 3,
can identify a suitable approximation to the active subspace withO(1/ε) samples of the gradient ofQ(y). Utilizing
the adjoint method for sensitivity analysis [2], the work needed to find the gradient is comparable to the work of
solving forQ(y), hence, the cost of finding the active subspace is comparable toO(2/ε) Monte Carlo samples.

The resulting low-dimensional projected problem can be attacked with a multitude of methods. Staying in the realm
of random sampling, we could use any of the methods from the QMC family that have well-established convergence
properties without the burden of additional assumptions. In low dimensions, the QMC method can find the projected
integral in approximatelyO(1/ε) evaluations ofQ(y), which, combined with the earlier estimate for Algorithm 1,
leads a total cost ofO(3/ε). Thus, for this particular class of reducible differentiable problems, Algorithm 1 combined
with QMC approach has total cost ofO(3/ε), which is much lower than the correspondingO(1/ε2) associated with
the classical Monte Carlo. In addition, SG and SC methods can exploit regularity of the projected problem and hence
achieve even faster convergence.

Remark 6. (Convergence of rational functions)
Here we consider a special case whereε = 0, Q(y) is a rational function of the components ofy and the PDF
ρ(y) ∈ L1(RN ). According to Corollary 1 there is a unique pair ofΛa andΛp, namelyΛa = span{∇Q(y)} and
Λp = span{∇Q(y)}⊥. Thus for each set of sample points we pickΛp

k ⊥ {∇Qi(yi}k
i=1, i.e.J(T ) is given by(24).

For everyv ∈ RN define
Sv =

{
y ∈ RN : 〈∇Q(y), v〉 6= 0

}
,

and considerα(y) = 〈∇Q(y), v〉, which is in itself a rational function. A rational function is zero either everywhere
or on a set of measure zero, and thus ifα(y) ≡ 0 thenSv = ∅, otherwise the measure ofSv is equal to1. Therefore,
P (Sv) =

∫
Sv

ρ(y)dy can attain only the values of0 and1, and furthermore, ifP (Sv) = 0, thenv ⊥ ∇Q(y) for all
y and hencev ∈ Λp. Conversely, ifv 6∈ Λp, thenP (Sv) = 1.

Consider a realization of Algorithm 1 and suppose that at stepk ≥ n = dim(Λa) we haveΛa
k, which is incomplete,

i.e., there is a nonzero vectorv ∈ Λa ∩ Λp
k. By definition ofΛa, we have thatv ∈ span{∇Q(y)}, however, since
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v 6∈ Λa
k, we have that condition(18) fails for all y ∈ Sv. Assuming the notation of Theorem 2, we note thatSv ⊂ Zk

and according to the same theorem, fork ≥ n, we have thatmk ≥ P (Sv) and sincev 6∈ Λp we have that

mk ≥ P (Sv) = 1.

Usingmk = 1 in Eq. (31) we conclude that the Algorithm 1 can identify the active subspace in a finite number of
steps, namelyn = dim(Λa).

5. NUMERICAL EXAMPLES

In this section, we present three numerical examples to illustrate our numerical approach and to validate our theoretical
results. The first example considers a linear problem within the classical Karhunen-Loève setting. We demonstrate that
in the worst case scenario, the bound on the convergence rate predicted by Theorem 3 is indeed sharp. In the second
example, we consider an output of interest with a very low dimensional active subspace. Our method consistently
identifies that subspace with very few samples and hence we achieve convergence with number ofover-samplesdk

that is orders of magnitude less than what is required by Theorem 3. This demonstrates that for some problems, we
can find the active subspace long before we have a sample size that can give us sufficient confidence in the result.
However, in all cases, our method converges significantly faster then competing sampling approaches. Finally, we
apply our method to a one-dimensional physical reactor problem, described in Example 2, with a significantly large
number of cross-section uncertainties. We demonstrate that for moderate error toleranceε, we can find a very low
dimensional active subspace that preserves the dynamics of the output of interest. However, when we tighten the
tolerance, the size of the active subspace grows very fast, exhibiting how our gradient-based reduction technique can
only be successfully applied to the neutronics problem for moderate error tolerance.

5.1 Application to Classical Finite-Dimensional Karhunen-Lo éve Expansion

Consider the classical finite-dimensional Karhunen-Loéve problem,

Q(y) = yT Sy, y ∈ RN , andρ(y) =
e−

1
2‖y‖2

(2π)N/2
,

whereN = 100 andS ∈ R100×100 is a symmetric positive definite matrix. In order to illustrate the theoretical
results given by Theorem 3, we takeS to be a random matrix of size100, specifically generated through the following
procedure:

1. Generate a matrixR ∈ R100×100, where the elements ofR are sampled from a standard Gaussian distribution
with zero mean and unit variance;

2. DefineS = RT R;

3. Scale the eigenvalues ofS with use of a sequence{si}N
i=1 to enforce rapid eigenvalue decay.

Figure 2 shows the eigenvalue decay of the two test matrices that we use for the discussion below.
In order to validate the results form Theorem 3, we need to consider the expectation and variance of the error in

the projection associated with Algorithm 1 with respect to the distribution of the samples. To that end, we define

e(d) : N→ R,

wheree(d) is a possible realization of the error associated withd number ofover-samples. Obviously,e(d) is a random
variable for eachd and hence we are interested in the statistical expectationE[e(d)−ε] and varianceV [e(d)]. In order
to compute the statistics, we execute the algorithm multiple times and gather samples fore(d) in a manner consistent
with the Monte Carlo method.

Volume 5, Number 1, 2015



64 Stoyanov & Webster

10
0

10
1

10
2

10
−20

10
−15

10
−10

10
−5

10
0

Eigenvalue index

E
ig
en
va
lu
e
m
a
g
n
it
u
d
e

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eigenvalue index

E
ig
en
va
lu
e
m
a
g
n
it
u
d
e

FIG. 2: Log plot of the eigenvalue decay for the two random test matrices. The first12 eigenvalues decay assi =
exp(−1.727(i− 1)), while the remaining ones are set to10−14 (left) and10−9 (right). All eigenvalues are normalizes
so thatλmax = 1.

Due to the structure of the problem, the exact expectation ofQ(y) can be computed by summing the eigenvalues
of S. Furthermore, suppose that we want to project the QoI onto a lower dimensionalactivespace, then we can take
any orthonormal basis forΛa and if we arrange the basis into the columns ofV , then the expectation of the projected
QoI is the sum of the eigenvalues ofV T SV . Finding the eigenstructure of a100 dimensional matrix is trivial, which
makes it feasible to compute a large number of realizations.

We apply Algorithm 1 usingJ(T ) described in Section 4 Example 4 with cutoffλ = 10−4. The error bound in
Theorem 3 usesε, which is not equal toλ, and thus we utilize the heuristic estimate

ε ≈ min
d

(E[e(d)]),

In every realization of Algorithm 1, we seek a reduced system of smallest dimension that will satisfy condition (28).
However, the probabilistic nature of the algorithm results in an active sub-space of variable size. In Table 1, we show
the statistics for the size of the reduced system.

According to Theorem 3, we should observe the relation

E[e(d)] ≤ ε +
C

d + 1
, V [e(d)] ≤ C2

(d + 1)2
.

and Figs. 3 and 4 give the computed decay rate. In both cases, the error obeys the convergence bounds of Theorem 3.
Furthermore, we note that for one of our random matrices, the rate of convergenceO(d−1

k ) is indeed sharp. Even
though Theorem 2 suggests the possibility of exponential convergence, in the general case, we cannot assume faster
linear rate.

TABLE 1: Size of the reduced system
Minimum Maximum Mean Median

Example with faster eigenvalue decay 4 6 4.3 4
Example with slower eigenvalue decay 6 9 7.2 7
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FIG. 3: Log plot ofE[e(d) − ε] andV [e(d) − ε] as a function ofd. The decay rate for the first20 entries is−1.73
and−3.02.
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FIG. 4: Log plot ofE[e(d) − ε] andV [e(d) − ε] as a function ofd. The decay rate for the entries2 through11 is
−1.02 and−2.47, respectively.

5.2 Highly Reducible Random Parameter Problem

We present an example of a nonlinear problem with low dimensional active subspace and we consider the performance
of several common methods compared to our gradient-based reduction approach. Letη(x) be a piecewise constant
approximation to an uncorrelated noise field, given by

η(y, x) =
N∑

i=1

yiIi(x),

where eachyi is uniformly distributed in[−1, 1] andIi(x) is the indicator function of the interval[(i− 1)/N, i/N ],
i.e.,

Volume 5, Number 1, 2015



66 Stoyanov & Webster

Ii =





1, x ∈
[
(i− 1)

N
,

i

N

]

0, x 6∈
[
(i− 1)

N
,

i

N

] .

Define the operatorC : L2 ([0, 1]) → L2 ([0, 1]) by

C(f) =
∞∑

k=1

1
(kπ)6

sin(kπx)
∫ 1

0

sin(kπs)f(s)ds,

and consider theL2 inner product〈η, C(η)〉L2 =
∫ 1

0
ηC(η)dx such that the QoI is given by

Q(y) = e−
1
2 〈η,C(η)〉L2 .

Here we takeN = 1000, the random parameter domain isy ∈ Γ = [−1, 1]N , and probability distribution isρ(y) =
1/2N . The gradient can be computed by formal differentiation

∂Q(y)
∂yi

= Q(y) 〈Ii, C(Ii)〉L2 yi i = 1, 2, · · · , N,

and the goal is to computeE[Q] =
∫
Γ

Q(y)ρ(y)dy.
We compare the accuracy of different approaches for computing the expectation of the QoI, against the results of

a brute force random sampling with106 realizations. These include sensitivity analysis, Karhunen-Loéve projection,
and our Algorithm 1. For the two projection schemes, if we project the QoI on a low-dimensional active subspace, we
could apply the collocation method, however, this is beyond the scope of our paper. Since we are only interested in
the error associated with the projection, we use Monte Carlo sampling to compute the expected value of both the full
order and projected QoI.

We can compute the gradient∇yQ(y) and hence we can utilize sensitivity analysis [2]. The nominal value for
the random vector isE[y] = 0 andQ(E[y]) = Q(0) = 1. The nominal gradient is∇yQ(0) = 0 and therefore the
method yields the approximationE[Q] ≈ 1 with variance of0. However, the quantity of interest in this example is
nonlinear and brute force Monte Carlo sampling givesE[Q] ≈ 0.8832. Sensitivity analysis results in error of more
than13% and this single point method does not offer a strategy to improve this approximation.

The operatorC was purposely chosen to have very fast eigenvalue decay and the structure of∇yQ(y) suggests
that the active subspace will be associated with only the dominant eigenspace ofC, and therefore it is low-dimensional.
However, we cannot rigorously apply the classical KL approach becauseQ(y) is not a quadratic functional. Therefore,
the KL error bounds will not be valid. Indeed, if we letΛa be the space spanned by the first four dominant eigenvectors
of C, then the error predicted by KL is≈ 1.0629×10−4, while the actual error is≈ 5.2550×10−4. The KL approach
greatly underestimates the projection error. If we letε = 10−4 and apply Algorithm 1, then we can take dim(Λa) = 4
and achieve an approximation that is a full order of accuracy better than the linear KL approach (see Fig. 5).

Finally, we apply Algorithm 1 and compare the results to the error bound in Theorem 3. Figure 5 superimposes
four reduction tests with different values ofε. The reduction algorithm needs only a few samples to approximateΛa

and reach the desired tolerance. According to Theorem 3, the expected value of the error is bounded byε + O(M−1)
and the standard deviation is less thanO(M−1), thus our confidence in the reduced model is low. However, even
though the rate ofO(M−1) is a conservative estimate, the decay is faster than the brute force sampling approach.

5.3 Neutron Transport with Stochastic Cross Sections

Consider the PDE with stochastic cross sections described in Section 2 Example 2 with deterministic domain illus-
trated on Fig. 6. We consider two “fuel rods” and a “control rod” between them; the space between the rods is filled
with “coolant.” The fuel-rod regions have large fission cross-sections, the control rod region has a large capture cross
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FIG. 5: Convergence of Algorithm 1 vs the confidence estimate in Theorem 3. The reduction approach needs only
a few samples to find a suitable active subspace and reach the desired toleranceε = 10−3,−4, thus the algorithm can
identify the active subspace long before we have a sufficient confidence in the computed projection. The dimension
of the active subspace is dim(Λa) = 3 whenε = 10−3, and dim(Λa) = 4 whenε = 10−4.

FIG. 6: Mockup reactor problem.

section, and the coolant interacts only weakly with the neutrons. As such, we define the indicator functions for each
of the three materials

IU (x) =
{

1, x ∈ fuel-rod
0, o.w.

IB(x) =
{

1, x ∈ control-rod
0, o.w.

IW (x) =
{

1, x ∈ coolant
0, o.w.

,

where the lettersU , B, andW are chosen to abbreviate the regions of the domain based on the common material used
for nuclear fuel (Uranium), control-rod (Boron), and coolant (Water). We model the uncertainty in the cross sections
as an additive, scaled, uncorrelated piecewise constant field

σp(x; ω) = σ̄p(x) + cp(x)yp(x; ω) =
∑

l∈{U,B,W}
σ̄p,lIl(x) + cp,lIl(x)yp(x; ω), p ∈ {s, c, f}, (32)

whereσ̄p,l are the nominal cross sections andcp,l are the scaling factors. The numerical values that we used are
given in Table 2. Note that the actual cross-section values used are not the physical values associated with any real
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TABLE 2: Nominal values and noise scaling for the cross sections
Scatter Capture Fission

Nominal Scaling Nominal Scaling Nominal Scaling
Fuel rod 1.0 ±0.30 0.10 ±0.05 7.0 ±6.0

Control rod 1.0 ±0.03 8.15 ±4.00 0.0 ±0.0
Coolant 0.1 ±0.05 0.10 ±0.05 0.0 ±0.0

world materials, we are using artificially selected values with very large range, in order to make the problem more
challenging.

We focus on the reactor criticallity problem given by Eq. (6). The discretization is achieved by virtue of a finite
difference scheme: we taken points in space{xi}n

i=1 ⊂ [0, 1] andm Clenshaw-Curtis [35] points{µj}m
j=1 ⊂ [−1, 1]

and we approximate the neutron flux byψ(x, µ) ≈ ψ(xi, µj) = ψ
j
i . The convection operator is discretized via an

up-winding scheme

µj
∂ψ

∂x
(xi, µj) ≈





µj

ψ
j
i+1 −ψ

j
i

xi+1 − xi
, µj < 0

µj

ψ
j
i −ψ

j
i−1

xi − xi−1
, µj > 0

, (33)

where we impose zero-Dirichlet boundary condition at the inflow, i.e., the reactor is shielded from external neutron
sources. We discretizeφ with the quadrature rule

φ(xi) =
1
2

∫ 1

−1

ψ(xi,µ)dµ ≈ 1
2

m∑

j=1

wjψ(xi, µj) ≈ 1
2

m∑

j=1

wjψ
j
i , (34)

wherewj are the Clenshaw-Curtis weights. At each point of the domain, we represent the noise by three random
variables associated with the three types of cross section parameters. Each sample has a uniform distribution on the
canonical interval[−1, 1]. Thus we havey ∈ R3×n and (32) becomes

σp(xi) = σ̄p(xi) + cp(xi)yi
p, p ∈ {s, c, f}.

The discretized version of (6) can be written as

Tψ
j
i + (Ss(y) + Sc(y) + Sf (y))ψj

i = Ss(y)Dψ
j
i +

ν

k
Sf (y)Dψ

j
i ,

whereT is the discrete convection operator (33),D is the integral operator (34),Ss(y), Sc(y), Sf (y) are diagonal
matrices with the cross sections, andν = 2.4. More generally, the eigenvalue problem can be expressed as

Aψ = λBψ, (35)

whereA = T +(Ss(y)+Sc(y)+Sf (y))−Ss(y)D, B = νSf (y)D, andλ = 1/k. Recall that our goal is to estimate
the expected valuesE[k(y)]

E[k(y)] =
∫

Γ

k(y)ρ(y)dy, (36)

whereρ(y) is the uniform distribution on the hyper-cubeΓ = [−1, 1]3n. For our examples, we use discretizations
n = 1000 andm = 14, which means that the integral (36) is in3000 dimensions.

In order to apply Algorithm 1, we need a way to approximate∂λ/∂yi. Each of the operatorsSs(y), Sc(y), Sf (y)
depend linearly on the uncertaintyy and therefore can be easily differentiated. However,λ has a nonlinear dependence
ony. Supposeψ andλ satisfy Eq. (35) and to simplify notation define

∂Ai =
∂A

∂yi
, ∂Bi =

∂B

∂yi
, ∂ψi =

∂ψ

∂yi
, ∂λi =

λ

∂yi
,
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then formally differentiating (35) we have

(∂Ai − λ∂Bi)ψ + (A− λB) ∂ψi = ∂λiBψ. (37)

Let ψ̂ be the left generalized eigenvector ofAψ̂ = λBψ̂ associated withλ, then we can multiply (37) bŷψT and
simplify

ψ̂T (∂Ai − λ∂Bi) ψ = ∂λiψ̂
T Bψ,

which allows us to solve for∂λi.
We first take2000 samples of∇yk(y) and arrange them into the columns of a snapshot matrix, revealing the

decay of the singular values. Figure 7 shows the initial rapid decay, followed by a “plateau.” Therefore, for a moderate
choice ofε, we expect to find a low-dimensional active subspace, however, if we decrease the tolerance, the dimension
of Λa should increase dramatically.

We apply the reduction algorithm with three different values ofε, i.e., 10−3, 10−4, and10−4, and we give the
results in Table 3. In each case, we stopped the iteration when the number ofover-samplesreached around1000. For

10
0

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Index of the Singular Values

M
ag

ni
tu

de
 o

f t
he

 S
in

gu
la

r 
V

al
ue

FIG. 7: Decay of the singular values of a set of sample for∇k(y). We observe a sharp decay until singular value6,
followed by a “plateau” until singular value90. Hence, for moderate values of the toleranceε, we expect to identify
an active subspaceΛa with low dimension; if we decreaseε, we expect the dimensionΛa to increase dramatically.

TABLE 3: Results from three realizations of Algorithm 1 for
three different values ofε. We use discretization parametersn =
1000 andm = 14 resulting in a problem with3000 dimensions
of uncertainty. All three realizations were terminated whendk

reached1000
ε dim(Λa) Error

Test 1 10−2 2 1.6× 10−3

Test 2 10−3 4 3.9× 10−4

Test 3 10−4 103 9.7× 10−6
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the largest tolerance, we can approximate the expected value to the desired tolerance by keeping only2 out of the
3000 dimensions. If we decrease the tolerance to10−3, the size of the active subspace increases to4, however, the
error in the projection decreases. As expected, when we decrease the tolerance to10−4, the size of the active subspace
increases to103 and even though the error in the projection is considerably lower,103 is still prohibitively large to
allow for efficient application of any low dimensional integration scheme. A low-dimensionalΛa can be found only
for moderate values ofε.

A significant proportion of the dynamics ofk(y) is dominated by only a few modes. Therefore, we can approx-
imateE[k(y)] to less than1% by projecting the QoI onto an active subspaceΛa of no more than four dimensions.
Furthermore, Algorithm 1 is a reliable method for identifyingΛa at an approximately linear computational cost. How-
ever, if higher degree of accuracy is desired, then the additional dynamics that need to be identified are associated with
a much larger number of directions. For smallε, the dimension of the active subspace increases dramatically, which
renders infeasible the application of sparse grids collocation or other fast convergent low-dimensional integration
techniques.

6. CONCLUSIONS

In this work, we presented a projection approach that utilizes the gradient, for forward uncertainty quantification
of high-dimensional problems. We use Monte Carlo sampling for the sensitivity of the output of interest (i.e., the
gradient at the sample point), we use this information to identify a low-dimensional active subspace and project the
output of interest in a manner similar to the classical Karhunen-Loéve expansion. However, our method produces
results that are valid for problems with large range of uncertainty and hence more accurate than the single-point
sensitivity analysis. Moreover, unlike the classical Karhunen-Loéve expansion, our error bounds are valid for highly
nonlinear problems. Finally, if the resulting projected problem is moderate-dimensional, we could apply conventional
quasi-Monte Carlo or stochastic collocation sampling techniques and benefit from their fast convergence rate, which
leads to total computational cost that is much lower than classical brute force Monte Carlo. The success of out method
is contingent upon the existence of a low-dimensionalactivesubspace, which in turn depends on the structure of
the problem and the choice of toleranceε. Some problems can only be reduced for a moderate error tolerance.
Furthermore, in some cases, our error bounds can be overly conservative producing low confidence in an otherwise
accurate result. Nonetheless, this method can be successfully applied to PDE models with large number of uncertain
parameters, such as the criticality of the nuclear reactor with a large number of uncertain cross-sections.
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