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Guaussian process regression is a popular Bayesian framework for surrogate modeling of expensive
data sources. As part of a broader effort in scientific machine learning, many recent works have
incorporated physical constraints or other a priori information within Gaussian process regression
to supplement limited data and regularize the behavior of the model. We provide an overview and
survey of several classes of Gaussian process constraints, including positivity or bound constraints,
monotonicity and convexity constraints, differential equation constraints provided by linear PDEs,
and boundary condition constraints. We compare the strategies behind each approach as well as
the differences in implementation, concluding with a discussion of the computational challenges
introduced by constraints.
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1. INTRODUCTION

There has been a tremendous surge in the development anchéipplof machine learning mod-
els in recent years, due to their flexibility and capabildayé¢present trends in complex systems
(Hastie et al., 2016). The parameters of a machine learnodghtan often be calibrated, with
sufficient data, to give high fidelity representations of thnelerlying process (Frankel et al.,
2019b,c; Jones et al., 2018; Raissi et al., 2017). It is nasilide to construct deep learning
models over datasets of tens of thousands to millions ofplaitets with modern computational
resources (Dean et al., 2012). In many scientific applioatibowever, there may not be large
amounts of data available for training. Unlike data froneinet or text searches, computational
and physical experiments are typically extremely expendWoreover, even if ample data ex-
ists, the machine learning model may yield behaviors thratramonsistent with what is expected
physically when queried in an extrapolatory regime.
To aid and improve the process of building machine learningels for scientific applica-

tions, it is desirable to have a framework that allows theoiporation of physical principles
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and othem priori information to supplement the limited data and regulafimeliehavior of the
model. Such a framework is often referred to as “physicsstamed” machine learning within
the scientific computing community (Brunton et al., 2016)eloet al., 2018; Lee and Carlberg,
2018; Ling et al., 2016; Lusch et al., 2018; Pan and Durais@®¥8; Raissi and Karniadakis,
2018). Karpatne et al. (2017) provide a taxonomy for theguigded data science, with the goal
of incorporating scientific consistency in the learning ehgralizable models. The information
used to constrain models can be simple, such as known rangesiivity constraints, shape
constraints, or monotonicity constraints that the macheaening model must satisfy. The con-
straints can also be more complex; for example, they candenkoowledge of the underlying
data-generating process in the form of a partial diffesdmijuation. Several recent conferences
highlight the interest in “physics-informed” machine legug (Berkeley Institute for Data Sci-
ence, 2019; Los Alamos Center for Nonlinear Studies, 2026rddoft, 2019; Stanford Univer-
sity, 2020; University of Washington, 2019).

Much of the existing research in physics-informed mach@sering has focused on incor-
porating constraints in neural networks (Jones et al., 20ib§ et al., 2016), often through the
use of objective/loss functions, which penalize constraiolation (Cyr et al., 2019; Magiera
et al., 2019; Mao et al., 2020; Raissi, 2018; Raissi et all9200ther works have focused on
incorporating prior knowledge using Bayesian inferenea #xpresses the data-generating pro-
cess as dependent on a set of parameters, the initial disbribof which is determined by the
available information, e.g., functional constraints [jdigl et al., 2017; Wang and Berger, 2016).
Unlike deterministic learning approaches, the predigiorade using approximations trained
with Bayesian inference are accompanied with probaliledtimates of uncertainty/error.

Within the Bayesian regression framework, Gaussian peesefGPs) are popular for con-
structing “surrogates” or “emulators” of data sources #ratvery expensive to query. The use
of GPs in a regression framework to predict a set of functialues is called Gaussian pro-
cess regression (GPR). An accurate GPR can often be calestuging only a relatively small
number of training data (e.g., tens to hundreds), which istmsf pairs of input parameters
and corresponding response values. Once constructedPlRecén be thought of as a machine-
learned metamodel and used to provide fast, cheap functialunagions for the purposes of
prediction, sensitivity analysis, uncertainty quantifica, calibration, and optimization. GP re-
gression models are constructed with data obtained fronpatational simulation (Gramacy,
2020) or field data; in geostatistics, the process of apgl@aussian processes to field data has
been used for decades and is frequently referred to as gri@hiles and Desassis, 2018).

In this survey we focus on the use of constrained GPRs thatrhemincorporate a wide
variety of physical constraints (Bachoc et al., 2019; Dagseand Marrel, 2012; Jensen et al.,
2013; Lépez-Lopera et al., 2018; Raissi et al., 2017; Ridki and Vehtari, 2010; Solak et al.,
2003; Yang et al., 2018). Specifically, we focus on the follayopics, after a short review of
Gaussian process regression in Section 2. Section 3 psemgterview and a classification of
constraints according to how the constraint is enforcethduhe construction of a GP. Section
4 discusses bound constraints, in which the GP prediction mearequired to be positive, for
example, or the prediction may be required to fall betwegmeunand lower bounds. Section 5
discusses monotonicity and related convexity constra@@dsstraints may also be more tightly
integrated with the underlying physics: the GP can be caimstd to satisfy linear operator con-
straints, which represent physical laws expressed aspdiffierential equations (PDE). This is
discussed in Section 6. Section 7 discusses intrinsic kaoyrabndition constraints. We review
several different approaches for enforcing each of thesstrint types. Finally, Section 8 is a
compendium of computational details for implementing thiestraints of Sections 4—7, together
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with a summary of computational strategies for improvindgRa#hd brief commentary about the
challenges of applying these strategies for the constlag@tes considered here.

The taxonomy we present is formulated to enable practit®tweeasily query this overview
for information on the specific constraint(s) they may beliested in. For approaches that en-
force different constraints but have significant overlamiethodology, references are made be-
tween sections to the prerequisite subsection where tiaitad basis of an approach is first
discussed in detail. This is done, for example, when disegspline-based approaches, which
are used for both bound constraints in Section 4 and mor@tpbnstraints in Section 5.

Not all physical constraints can be neatly divided into théegories that we focus on in
Sections 4-7. For example, with a view toward computer misgalzmann and Urtasun (2010)
considered GPR for pose estimation under rigid (constagieaand length) and nonrigid (con-
stant length) constraints between points. They proveditiesdr equality constraints of the form
Ay = b, if satisfied by all the data vectogs are satisfied by the posterior mean predictor of
a GP. Then, at the cost of squaring the input dimension, tteeslated quadratic length con-
straints into such linear constraints for pairwise prodwucéthe input variables. In another exam-
ple, Frankel et al. (2019a) applied GPR to predict the behlafihyperelastic materials in which
the stress-stretch constitutive relation naturally eithitotational invariance. The rotational in-
variance was enforced by deriving a finite expansion of thecg stress tensor in powers of
the Finger tensor that satisfies the rotational invariarceitiue of its structure, and GPR was
performed for the coefficients of the expansion. We menti@sé examples to illustrate that
physical constraints are varied, and in some cases the thitlemforce them can depend highly
on the specific nature of the constraint.

Even within the selected categories represented by Ssetien, the literature on constrained
Gaussian processes is extensive and expanding rapidigeGoantly, we cannot provide a com-
plete survey of every instance of constrained GPR. Rathestrive to discuss main areas of
research within the field. The goal is to aid readers in selgehethods appropriate for their
applications and enable further exploration of the literatWe present selected implementation
details and numerical examples, giving references to tigénat works for further details. Many
of the authors of these works have developed codebaseslandaé them publicly. Finally, we
remark that we have adopted consistent notation (establishSection 2) for GPR that does not
always follow the notation of the original works exactly.

2. GAUSSIAN PROCESS REGRESSION

This section provides an overview of unconstrained Gangsiacess regression. As mentioned
previously, Gaussian process models, or simply Gaussiacepses, are popular because they
can be used in a regression framework to approximate coatpticnonlinear functions with
probabilistic estimates of the uncertainty. Seminal wascdssing the use of GPs as surrogate
models for computational science and engineering appitatnclude the papers of Sacks et al.
(1989) and Santner et al. (2003) and the book by RasmusséWwiliizins (2006).

A Gaussian process can be viewed as a distribution over &fsgtadions. A random draw or
samplef from a GP is a realization from the set of admissible funai@pecifically, a Gaussian
process is a collection of random variable&(x) | x € Q c R?} for which, given any finite
set of N inputs X = {x1,x2,....,xn}, X; € §, the collectionf(x1), f(x2), ..., f(xn) has a
joint multivariate Gaussian distribution. A GP is complgtgefined by its mean and covariance
functions, which generate the mean vectors and covarianagtces of these finite-dimensional
multivariate normals. Assumptions such as smoothnegs stfationarity, and sparsity are used
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to construct the mean and covariance of the GP prior, andBhgas’s rule is used to constrain
the prior on observational/simulation data.

The predictionf = [f(x1), f(x2),...f(xx)]" of a Gaussian process with mean function
m(x) and a covariance functidi(x, x’) is a random variable such that

p(le) ZN[f;m(X),k(X,X)], (1)

wherem(X) denotes the vectdim(x;), ..., m(xy)] " andk(X, X) denotes the matrix with
entries[k(x;,x;)]1<i j<n. The multivariate normal probability density functioi(f; m, K)
with mean vectom and covariance matriX has the form

1
(27T)N/2|K1/2|
The covariance kernel functidnof a Gaussian process must be symmetric and positive semidef

inite. Denoting the individuall components of the vector; asx;‘, where/ = 1,....d, the
squared exponential kernel

1N (2t — 20\
k(xiaxj) :ﬂzeXP [22 (¥> ] ) n,P1, .-+, Pd € Ra (3)
(=1

N(E;m, K) = exp {—%(f —m) K(f —m)|. (2)

Pe

is popular, but many other covariance kernels are availdble choice of a covariance kernel can
have profound impact on the GP predictions (Duvenaud, 2Radmussen and Williams, 2006),
and several approaches to constraining GPs that we sunyeyrreonstruction of a covariance
kernel specific to the constraint.

The density [Eq. (1)], determined by covariance keahd the meam, is referred to as
a prior for the GP. If the error or noise relating the actuaea®ationsy = [y(x1), y(x2), ...,
y(xn)]" collected at the set of input§ = {x;}Y, to the GP predictiorf is assumed to be
Gaussian, then the probability of observing datgiven the GP prior, is given by

p(y|X,f) = N(y;f,0°Iy), o€R. 4

Here,Iy denotes théV x IV identity matrix. The density(y|X, f) is referred to as the likelihood
of the GP, and the Gaussian likelihood [Eq. (4)] is by far theshcommon. As discussed in
Section 4.1.2, specific non-Gaussian likelihood functicans be used to enforce certain types of
constraints.

The parameters in the covariance kernel function of a GPedieered to as hyperparameters
of the GP. We denote them I8y For the squared exponential kernel [Eq. (3)], the aggeegat
vector of hyperparametersfis= [n, py, .., p4, 0], where we have included the likelihood/noise
parametew from Eq. (4) as a hyperparameter. In general, finding thethgmrparameters to fit
the data is an important step of GPR, known as training. Froman, we explicitly denote the
dependence o6 of the likelihoodp(y|X, f) in Eq. (4) and the priop(f| X) in Eq. (1), writing
these a®(y|X, f,0) andp(f| X, 0), respectively. The marginal likelihood is given by

p(y|X,0) = / p(y|X. £, 0)p(E| X, 0)df, 5)

and the log marginal likelihood for a GP with a zero-meanmri@ = 0) can be written (Murphy,
2012; Rasmussen and Williams, 2006) as

1 -1 1 N
logp(y|X,0) = —EyT(K(X,X)—i—GZIN) y—§10g|K(X,X) + UZIN| —ElogZﬂ'. (6)
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Formula (6), derived from Eqgs. (5), (1), and (2), is a funetid the hyperparameteéspresent
in the kernelk, which can be optimized to give the most likely values of tgpdrparameters
given data. This is known as maximum likelihood estimatigiiE) of the hyperparameters.

Once the hyperparameters of the GPR have been chosen, teeqrasf the GPs is given by
Bayes' rule,

p(le’ 9)p(y|X, f, 9)
p(f|X7Yae) p(y|X,9) . (7)

Given the priorp(f| X, 0) [Eq. (1)] and the Gaussian likelihogdy| X, f,0) [Eq. (4)], the pre-
diction f* of a GPR at a new point* can be calculated (Rasmussen and Williams, 2006) as

p(f*|y,X,x*,9) :N[m(X*)v@(X*)]a (8)
where

mlx*) = x* 2 -1
( )_II:( XK (X, X) + 0°In] 7y, )

B(x*) = k(x*, x*) — k(x*, X)[K (X, X) + oIy  [k(x*, X)] .

Note that the meam (x*) of this Gaussian posterior is the mean estinft&(x*)] of the pre-
dicted function valug™* atx*, and the variancé(x*) is the estimated prediction variance of the
same quantity.

We now preface some of the computational issues of infereanGPR that will be impor-
tant for the constrained case. First, when the GP likelihgd8aussian, the posterior [Eq. (8)]
is also Gaussian, thus it can be computed exactly, and sagnjpbm the posterior is simple.
This is generally not the case when the likelihood is not Giaims The same issue arises if the
density [Eq. (8)] is directly replaced by a non-Gaussiarsitgrin the course of enforcing con-
straints (by truncation, for example). Next, inversion[&f(X, X) + o2Iy], which scales as
N3, is an omnipresent issue for inference. This poor scaligrge data is compounded by the
fact that increased data tends to rapidly increase the tondiumber of K (X, X) (see Sec-
tion 8.3.1). Finally, optimizing the hyperparameters @& P involves the nonconvex objective
function [Eg. (6)]; both this function and its derivativeregotentially costly and unstable to
compute for the reasons just mentioned. These issues ariseriventional GPR, but through-
out Sections 4—7 we shall see that constraining the GPs cke tmem more severe. Therefore,
we review potential strategies for dealing with them in $#ec8.

3. STRATEGIES FOR CONSTRAINTS

There are many ways to constrain a Gaussian process modedliffibulty with applying con-
straints to a GP is that a constraint typically calls for aditban to hold globally—that is, for
all pointsz in a continuous domain—faall realizations or predictions of the proce8spriori,
this amounts to an infinite set of point constraints for amitdi dimensional sample space of
functions. This raises a numerical feasibility issue, léach method circumvents in some way.
Some methods relax the global constraints to constraimtdiaite set of “virtual” points; others
transform the output of the GP to guarantee the predictiatisfg the constraints or construct a
sample space of predictions in which every realizatiorsfasi the constraints. This distinction
should be kept in mind when surveying constrained GPs. Famele, the methods in Sections
4.1, 4.4, and 6.2 enforce constraints globally. The metlw@ections 4.2 and 6.1 enforce the
constraint at scattered auxiliary data points, be this altreintroducing virtual data points for
constraints, incomplete knowledge, or spatial variapilit
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Strategies for enforcing constraints are apparent fromawiew of GPR in Section 2, which
covers posterior prediction fdt, the likelihood function for observations, the kernel prior
K, and the data involved in GPR. Some methods, such as thengamethod of Section 4.1,
simply apply a transformation to the outpubf GPR, so the transformed output satisfies the
constraint. This transformation is essentially independéthe other components of GPR. One
can instead introduce the constraints at the predictiofy oéplacing the density [Eq. (8)] by
augmenting the data with a discrete set of virtual pointhadomain and predictinf) from
the GP, given the data and knowledge that the constrainstaildhe virtual points. An ex-
ample of this is in Section 4.2. Next, the likelihop@y| X, f) provides another opportunity to
enforce constraints. One can replace the Gaussian likalifileg. (4)] with a likelihood func-
tion such that constraints are satisfied yoyegardless of the outpdt Hyperparameter opti-
mization provides yet another opportunity in which maxiatian of the marginal log likeli-
hood [Eg. (6)] is augmented with constraints on the postgriedictions of the GP, as in Sec-
tion 4.3.

A different strategy is to design a covariance kernel forgher [Eq. (1)] of the Gaussian
process that enforces the constraint. Several of the mettisdussed in this survey involve
regression with an appropriate joint GP, defined by the caimtf which uses a “four-block” co-
variance kernel, incorporating the constraint in some eftitocks. This is the strategy used for
the linear PDE constraints in Section 6.1. Such methodsasedon derivations of linear trans-
formations of GPs. These types of kernels can be combinddottier strategies for constraints,
such as for the monotonicity constraints of Section 5.1cthise a four-block covariance kernel
(for f andf’) within a likelihood approach.

Considering Gaussian processes as distributions ovetidas¢ another strategy is to con-
sider a function space defined by a certain representaticim that a global constraint can be
translated into a finite set of constraints, e.g., on thefimerfits of a spline expansion in Sec-
tions 4.4 and 5.3. Or a representation can be sought sucéviiat element of the sample space
satisfies the constraint before the Gaussian process @fnédtion) is even introduced. The lat-
ter approach is taken in Sections 6.2 and 7; in these casestthtegy amounts to deriving a
specific kernel function related to the representation.

Finally, data provides an opportunity to constrain Gausgiecesses implicitly. Some ap-
proaches involve proving that, if the data fed into a GP tgtothe posterior formula [Eq. (7)]
satisfies the constraint, then the GP predictions satighctimstraint—either exactly, as for the
linear and quadratic equality constraints of Salzmann aridsun (2010), or within a certain
error, as in the linear PDE constraints discussed in Se6t®rrhese results consider properties
of GPs that form the basis of such algorithms.

We note that some of the methods we cover may result in a parstistribution that is no
longer Gaussian, unlike the standard GPR posterior [E§}. {BUuS, such “constrained Gaussian
processes” no longer meet the definition of a Gaussian pspcesdering the former term a
misnomer in this strict sense. Nevertheless, we refer toraethod that uses the basic steps
of GPR, described in Section 2 as a starting point for a caim&d regression algorithm, as
providing a constrained Gaussian process.

4. BOUND CONSTRAINTS

Bound constraints of the formm < f(x) < b over some region of interest arise naturally in
many applications. For example, regression over chemmatentration data should enforce
that predicted values lie between 0 and 1 (Rider and Simn#013). Bound constraints also
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include, as a special case, nonnegativity constrgints0 (a« = 0,b = o). In this section we
present three approaches for enforcing bound constraints.

4.1 Transformed Output and Likelihood

The most direct way to impose bound constraints on a Gaugs@ress involves modifying
the output of the regression. One way to do this is to transfibve outputf of the GP using
a “warping” function, which satisfies the bounds. The secoad is to replace the Gaussian
likelihood [Eqg. (4)] with a non-Gaussian likelihood thatisfies the bounds, which is then used
to obtain a posterior formula for predicting observatignsom f. The paper by Jensen et al.
(2013) provides an overview and comparison of these two oadsthwe review this below. For
the subsequent discussion, we assume that we have a seeofathmgy; that satisfy the bound
constrainta < y; < b.

4.1.1 Warping Functions

Warping functions are used to transform bounded obsenggido unbounded observations.
The fieldu together with the observations are then treated with a traditional GP model using
the steps outlined in Section 2. The probit function, whithie inverse cumulative distribution
function of a standard normal random variabte:(-), is commonly used as a warping func-
tion (Jensen et al., 2013). The probit function transformstded valueg € [0, 1] to unbounded
valuesu € (—oo, 00) via

u=o"1(y). (10)

The probit function is popular whep; is uniformly distributed in[0, 1] because the trans-
formed valuesu; will be draws from a standard normal Gaussian with zero mewh umit
variance. For a discussion of alternative warping fun&jarve refer the reader to Snelson et al.
(2004).

4.1.2 Likelihood Formulations

In addition to using warping functions, bound constrairas @lso be enforced using non-
Gaussian likelihood functions(y| X, f, 0) that are constructed to produce GP observations that
satisfy the constraints. Given a general non-Gaussiatilded p(y| X, f, 0), the posterior dis-
tribution of GPR predictions is given by Eq. (7). Unlike thesgerior in Eq. (8), the posterior in
this case is no longer guaranteed to be Gaussian. There arateenof parametric distribution
functions with finite support that can be used for the liketil function to constrain the GP
model. Jensen et al. (2013) suggest either a truncated i@afsse Section 8.1) or a beta dis-
tribution scaled appropriately to the interval b]. Their results show that the beta distribution
generally performs better.

Unlike the warping method of Section 4.1.1, with either atated Gaussian likelihood or a
beta likelihood, the posterior [Eq. (7)] is not analytigailactable. Jensen et al. (2013) compare
two schemes for approximate inference and prediction usingnded likelihood functions: the
Laplace approximation and expectation propagation. Teppeoaches both use a multivariate
Gaussian approximation of the posterior but solve for theeguing posterior distribution in
different ways.
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4.2 Discrete Constraints Using Truncated Gaussian Distributions

By noting that a Gaussian process [Eg. (1)] is always traametevaluated at a finite set of points
X, global constraints over continuous domgifsuch as an interval in one dimension) can be ap-
proximated by constraints at a finite set’éf auxiliary or “virtual” pointsx;, ..., xy, € €. This
approach, introduced by Da Veiga and Marrel (2012), reguienstructing an unconstrained
GP and then, over the virtual points, transforming this GEheotruncated multivariate normal
density7 N (z; 1, 2, a, b) as a postprocessing step. The truncated multivariate nésmefined
and discussed in detail in Section 8.1.

More specifically, Da Veiga and Marrel (2012) construct apragimation that is condi-
tioned on a truncated multivariate Gaussian distributiptha auxiliary points. We point out
how this approach affects the mean posterior predictiontt@iGP. The unconstrained mean
predictor is conditioned on the data’, y):

E[f(x") | f(X)=y]. (11)
This setup is augmented by a fixed, finite set of discrete p({mg}jvzcl, and the predictor
[Eq. (11)] is replaced by the predictor

E[f(x*)]|f(X)=y and a< f(x;) <b forall i=1,2...N]. (12)

As [f(x1),..., f(xn,)] " is normally distributed in the unconstrained case [Eq.](idthe con-
strained case [EqQ. (12)] it is distributed according to tha¢ated multivariate normal.

In a few special cases, the mean and covariance of the technatmal can be derived ana-
lytically. In one dimension, the mean at a single predicfiomt, z;, is the unconstrained mean
plus a factor that incorporates the change in the probabilass of the Gaussian distribution to
reflect the truncation

d(x) — o(B)
(B) — ¢()’

wherea = (a — w)/o, p = (b — n)/o, andd and® are the probability density function and
cumulative density function of a univariate standard ndrdistribution, respectively. In gen-

eral, sampling and computing the moment§ ¥ (z; 1, 3, a, b) is computationally demanding.

Da Veiga and Marrel (2012) estimate moments empiricallpgisin expensive rejection sam-
pling procedure, based on a modified Gibbs sampler, to gensamples that honor the trun-
cation bounds. We discuss the computational challengetwha&ting the moments further in

Section 8.1.

In contrast to the warping approach (Section 4.1) or th@sgpproach (Section 4.4), which
maintain a global enforcement of the constraints, the beiméq. (12) can depend on the loca-
tion: a; < f(x;) < b;, representing different bounds in different regiond ¢éee Section 4 of
Da Veiga and Marrel (2012) for an example]. A downside of gghre approach described here
is that it is unclear how many virtual poinis are needed to approximately constrain the GP
globally with a prespecified level of confidence; some stigiih increasingV, are presented
by Da Veiga and Marrel (2012). However, if the number of peican be chosen adequately,
this approach can be used to enforce not only bound constitaih also monotonicity and con-
vexity constraints (Da Veiga and Marrel, 2012); see Sedidor more details. These types of
constraints can also include linear transformations of asSian process (Agrell, 2019).

E(zila<z<b)=p+o0o

Journal of Machine Learning for Modeling and Computing



Survey of Constrained Gaussian Process Regression 127

4.3 Constrained Maximum Likelihood Optimization to Enforce Nonnegativity
Constraints

Another option for handling bound constraints is to constitze optimization of the log marginal
likelihood [Eq. (6)], so that hyperparameters are choseenforce bounds. Pensoneault et al.
(2020) introduced this approach to enforce nonnegativatystraints up to a small probability
0 < e < 1 of violation at a finite set of constraint poins; } <,

P{lf(x))ly, X,x},0] <0} <€, i=12.. N (13)

For a Gaussian likelihood, the unconstrained postefibrfollows a Gaussian distribution
[Eg. (8)], and the probabilistic constraint Eq. (13) can biéten in terms of the posterior mean
m(x) and posterior standard deviatiefix) = /0(x), given by Eq. (9), and probit function
®~! (see Section 4.1.1):

m(x;) + @ He)s(x;) >0, i=12..,N..

Pensoneault et al. (2020) chase= 2.3% so thatb~1(e) = —2, i.e., the mean minus two stan-
dard deviations is nonnegative. With the condition that; ) be withinv > 0 of the observations
y;, 3 = 1,..., N, the maximization of the log marginal likelihood then be@sm

Seek 0" = argmaxog[p(y|X,0)]
0

subjectto  O< mi(x;) — 2s(x;), i=1,...,N, (14)
and  0<v -y — f(x;))l, j=1,...N.

Pensoneault et al. (2020) solve the constrained optimizatioblem [Eq. (14)] withv = 0.03
using a nonlinear interior point solver, demonstrating th@nnegativity is enforced with high
probability and also that posterior variance is signifigargduced. While this tends to be more
expensive than a usual unconstrained optimization of theyime log marginal likelihood, the
effect on the posterior [Eq. (8)] is to change the hyperpa&tans, while preserving the Gaussian
form, so that more expensive inference methods such as Mahien Monte Carlo (MCMC) are
not required. In principle, two-sided bounds and other $ypieconstraints can be treated in this
fashion, although Pensoneault et al. (2020) consider rgative constraints in their numerical
examples.

4.4 Splines

Maatouk and Bay (2017) present a constrained Gaussiangsrfmenulation involving splines,
where they place a multivariate Gaussian prior on a clasplofesfunctions. The constraints
are incorporated through constraints on the coefficienth@fspline functions. To avoid the
difficulty of enforcing a bound constraint< f(x) < b globally on a continuous domain for

all predictions, the approaches in Sections 4.2 and 4.¥esdoconstraints only at a finite set
of points. In contrast, the approach taken by Maatouk and(B@$7) is to instead consider a
spline interpolant whose finite set of knot values are goegby a GP. This reduces the infinite-
dimensional GP to a finite-dimensional one, for which theritistions of the knot values (i.e.,
the coefficients of the spline expansion) must be inferrgduBing a set of piecewise linear
splines that form a partition of unity, this approach guéean that the set of all values between
neighboring knots are bounded between the values of theskibus if the knot values satisfy
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prescribed bound or monotonicity constraints, then so mllisaelues in between them; that is,
the global constraints are satisfied if the finite-dimensiaonstraints are. The problem then
reduces to sampling the knot values from a truncated mukiteanormal.

4.4.1 GPR for Spline Coefficients

We first discuss the spline formulation in one input dimensiend without loss of generality
assume that the process being modeled is restricted to thaid¢0,1]. Leth(x) be the standard
tent function, i.e., the piecewise linear spline functi@fined by

h(z) = max(1 - |z],0),

and define the locations of the knots todhe= i /M fori = 0,1, ..., M, with M + 1 total spline
functions. Then for any set of spline basis coefficigntghe function representation is given by

fla) = &hM(z —z:)] =) Eihi(x).
=0 i=0

This function representation gives® piecewise linear interpolant of the point values, &;)
foralli =0,1,..., M.

The crux of the spline approach to GPR lies in the followinguanent. Suppose we are given
a set of N data points at unique locatios;, y,). Define the matrix4 such that

Aij = hi(x;).
Then any set of spline coefficienighat satisfy the equation
AL =y, (15)

will interpolate the data exactly. Clearly solutions tostliystem of equations will exist only if
the rank ofA is greater thanV, which requires that any given spline basis spans no more tha
two data points. Intuitively, this is because a linear fiortts only guaranteed to interpolate two
points locally. Supposing that we maké large enough to satisfy this condition, we can find
multiple solutions to the system Eq. (15).

We now assume the knot valuéso be governed by a Gaussian process with covariance
function K. Because a linear function of a GP is also a GP, the valuésaofly are governed
jointly (Lbpez-Lopera et al., 2018; Maatouk and Bay, 20ty a GP prior in the form

Y| o\ 0] [AKAT KAT

3 0’| AK K ’
where each entry of the covariance matrix is understood torhatrix. Upon observation of the
datay, the conditional distribution of the knot values subjecyte- A¢ is given by

p(E |y = Ag) = N(a; KAT(AKAT) Yy K — KAT(AKAT)—lAK).

This formula is similar to that proposed by Wilson and Nicki§2015), in which a GP is inter-
polated to a regular grid design to take advantage of fastitialgebra. In this case, we are now
interested in evaluating the distribution further coratittd on the inequality constraints given by

p(E|y=Afa<E<Db)

16
_ TN(a; KAT(AKAT) ly, K — KAT(AKAT)"AK, a, b), (16)
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where the truncated normal densifyV (i, 3, a, b) is defined and discussed in Section 8.1.
We illustrate bound constrained GPs using this approactign 1= We discuss monotonicity
constraints using this approach in Section 5.3 and constidViLE estimation of the hyperpa-
rameters in Section 8.2. Several constraint types can béioeh in this approach, in which
caseC in Eq. (16) is a convex set defined by a set of linear inegealiti&, (Lopez-Lopera et al.,
2018).

4.4.2 Sampling

Just as for the discrete constraint method discussed imo8et?, sampling from the truncated
normal distribution for the spline coefficienisintroduces a new computational challenge into
the GPR framework. While we discuss this in more detail andéweral dimensions in Section
8.1, we give a cursory discussion of this following Maatoukl 8ay (2017). We consider one
dimension and the one-sided constrgifit) > b on|0, 1].

The original method of Maatouk and Bay (2017) was to use &tieje sampling approach
by sampling from the untruncated distribution with a meaiftesth to the mode (or maximura
posterioripoint) of the true posterior. That is, one first solves thebfam

£ = arggmir(E, —w)'EHE - p),

subject to the bound constrainis > b, wherep = KAT(AKAT) 'y andY = K —
KAT(AKAT)"AK. This is a convex quadratic program (assuming the covagiamatrix is
not too ill-conditioned) and may be solved efficiently. Ohern draws samples fro’(£*, %)
and accepts or rejects the samples based on an inequalditioandescribed in more detail in
Maatouk and Bay (2016). This is a simple approach, but it doéperform well at larger scale.
The probability of rejecting any sample increases expaakntvith the number of splined/.
Furthermore, imprecision in the mode evaluation from thénaigation process can lead to a
deterioration of acceptance (for example, if the computederonly satisfies monotonicity con-
straints to within some solver tolerance). Other apprositbesampling from the multivariate
normal rely on Markov chain Monte Carlo methods and are dised in Section 8.1.

121 = Constrained GP
= Unconstrained GP

= Constrained GP

30 .
= Unconstrained GP 10

20
10

0

—-10-

_20 4

0.0 02 0.4 0.6 08 10 0.0 02 0.4 0.6 0.8 1.0
FIG. 1: Left: Comparison of a bound constrained GP with lower bowrd —20 and upper bound= 20
versus an unconstrained GP. Right: Comparison of a pdgitienstrained GP (lower bound= 0) versus
an unconstrained GP. The data and hyperparameters are femtolk and Bay (2017). The dotted lines
arep =+ 1o prediction intervals.
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4.4.3 Multidimensional Setting

The extension of the spline approach to higher dimensiossaghtforward. The spline knots
must be arranged in a regular grid witlh; + 1 points in each dimensiof and the process is re-
stricted to a hypercube domain of sige1]¢ for number of dimensiong. Under this restriction,
the underlying function may be approximated with the tessoduct spline expansion

My M, Mg

f(x)= Z Z Z &ivsin,..yiaPivsin, .. ia(T1, T2, s Ta),

i1=04,=0 i4=0
where, withh] = h[M;(z — 2;,)],

Rirsig.....ia(X) = hi, ® h, @ ... © bl (x) = hi; (x1)hE, (w2)...hY, (xa),
for knot locationsz;,, x;,, ..., z;,) and coefficients,, ,, . ,, for 0 < i; < M;. The inference
process from this representation proceeds as before, asetiny observed data values can be
expressed ag = A¢ for the appropriately defined matrik, and the coefficient valugsmay be
inferred with a truncated multivariate normal distributio

The primary issue with the multidimensional extension & itcrease in cost. The spline
approach suffers from the curse of dimensionality sincentimaber of spline coefficients that
must be inferred scales d¢? with M knots per dimension, leading t(1/3?) scaling of the
inference cost. This cost is further complicated by the flaat the spline formulation requires
enough spline coefficients to guarantee interpolationutiihahe data points in all dimensions,
which means thad/ > N. Some potential methods for addressing computational ity
are discussed later in this work. The need for efficient samgichemes is also increased in the
multidimensional setting, as the acceptance ratio of alsimgjection sampler, as discussed in
Section 4.4.2, decreases as the dimensionality (i.e., auafbcoefficients to infer) increases.
This is partially addressed by the Gibbs sampling schenfegee to above, but those schemes

also begin to lose efficiency as the size of the problem irser®afor other approaches, see
Section 8.1.

5. MONOTONICITY CONSTRAINTS

Monotonicity constraints are an important class of “shapestraints,” which are frequently
required in a variety of applications. For example, Maat®®&1L7) applied monotonicity-con-
strained GPR for the output of the Los Alamos National Latmga“Lady Godiva” nuclear
reactor, which is known to be monotonic with respect to thesttg and radius of the spherical
uranium core. Kelly and Rice (1990) considered monotonigB&n modeling of medical dose-
response curves, as did Brezger and Steiner (2008), forctiregsales from various prices of
consumer goods.

Roughly speaking, given a method to enforce bound consdraimonotonicity constraints
can be enforced by utilizing this method to enfofée> 0 on the derivative of the Gaussian
process in a “co-kriging” setup for the joint GP; f']. Indeed, many of the works reviewed
in Section 4 considered both bound, monotonicity, and cditweonstraints under the general
heading of “linear inequality constraints” (Da Veiga andrkéd, 2012; Maatouk and Bay, 2017).
As a result, some of the methods below are based on techniguies/ed in Section 4, and we
frequently refer to that section.
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5.1 Constrained Likelihood with Derivative Information

The work of Riihimaki and Vehtari (2010) enforces monotityi of a Gaussian process using
a probit model for the likelihood of the derivative obseiwas. Probit models are often used
in classification problems or binary regression when onetsvampredict a probability that a
particular sample belongs to a certain class (0 or 1) (Rasamuand Williams, 2006). Here it
is used to generate a probability that the derivative istpes{1) or not (0). Monotonicity is
obtained if the derivatives at all the selected points are. o

Using the probit model, the likelihoddor a particular derivative observation is given by

d(z) = /j N (;0,1)dt,

where N (¢; 0, 1) is the probability density function of the standard one-eliisional normal dis-
tribution [Eq. (2)]. This likelihood is used within an exp#ed GPR framework that incorporates
derivatives and constraints. As part of this formulatidrg originaln x n GP covariance ma-
trix, representing the covariance betweedata points, is extended to a four-block covariance
matrix. The full covariance matrix is composed of matriaeglving the covariance between
function values, the covariance between derivative valaed the covariance between function
values and derivative values.

Following Riihimaki and Vehtari (2010), our goal is to entfe thed;th partial derivative of
f atx; to be nonnegative, i.e.,

of
T (xi) >0, (7)

7

at a finite set of virtual pointX,,, = {x;}!" ;. Using the shorthand notation

- O
¢ 8$di

of

(9:Edl

(x;), and f = [ (xm)}T =1 fl"

(Xl)...%

and denoting Riihimaki and Vehtari (2010) use the notab'rbnfii rather thary; for observations
of df/0x4,(x;). They also use the term “operating points” for the virtuahp® an observation
of f/ = 9f/0xq,(x;) by y, we can write

bl =2 (15). (18)

Here®(z) is the cumulative distribution function of the standardmatdistribution, and Eq. (18)
approaches a step functionas— 0. Note that the likelihood function in Eq. (18) forces the
likelihood to be zero (for nonmonotonicity) or one (for mamicity) in most cases. Therefore,
by including observations af, = 1 at the virtual points, the derivative is constrained to bs-p
itive. Riihimaki and Vehtari (2010) point out that Eq. (1i8)more tolerable of error than a step
function and use = 10~ throughout their article.

The joint prior is now given by

p(£,f'|1X, X,,) = N (fioint |0, Kjoint),

TThis particular likelihood is the inverse of the probit ftien used for warping outputin Eq. (10): it maps
a value from(—oo, c0) to [0, 1], representing the probability that the value is in class Hi¢tvtranslates
to monotonicity for this application).
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where

Ke g Ke g/ } (19)

f
f]omt - [f’] and Kjomt - |:Kf/,f Kf/,f/
Here, then x n matrix K¢ ¢ denotes the standard covariance matrix for thef @Bsembled over
the data locationX: K¢ ¢ = k(X, X), as in Section 2 wherk denotes the covariance function

of f. Them x m matrix K¢ ¢ in Eq. (19) denotes the covariance matrix between the valties
the specified partial derivatives bfat the operational point¥’, ,:

[Ke ], = [cov(fi. f})] = {COV<%(Xi), ;x—i(xj)ﬂ ., 1<i, j<m.

J

Riihiméki and Vehtari (2010) show th&d f)/(0z4;,) is a GP with covariance matrix

g 0 ,
Wdlax:jj k(X,X), (20)
so that
0%k

[Kf/vf/]i .

J:W(xi,x;), 1<i, j<m.
i d]‘

This result is a special case of a linear transformation oPagee Section 6.1 for more details.
By the same general derivation in that section, the matrix m matrix K¢ ¢ represents the
covariance betweefiandf’ and is given by

Ok (
i ozl

J

[Kf,f’] X’L'ax_/j)a 1§Z§7’L, 1§.7 <ma

and them x n matrix K¢ ¢ = Kfo representing the covariance betwdéandf.
Putting this all together, we have the posterior probabditnsity of the joint distribution
incorporating the derivative information

1
p(f,f'ly.y') = Zp(f, '1X, X)) p(y[£)p(y'[£), (21)

where 17 is a normalizing constant. This density is analytically&ctable because of the non-
Gaussian likelihood for the derivative components. Riiddhinand Vehtari (2010) sample this
[Eg. (21)] using expectation propagation. We used an MCMfr@gch to sample the posterior
distribution. This approach is illustrated for an exampld=ig. 2; this example is particularly
challenging because the data is nonmonotonic, but theresiguarement that the GP be mono-
tonic.

We describe the MCMC approach that we used for Eq. (21). Asrbdf* andy* denote the
estimates of these quantities at a new prediction point

p(y*[x",x,y) = /p(y*lf*)p(f*IX*,x,y)df*,

p(E|x", %, y) = / / p(E|x* £, £)p(E, £'|x, y)dEdE".
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FIG. 2: Comparison of monotonic GP using the constrained likelchémrmulation (left) and the un-
constrained GP (right). Observations are give{ @1, 0.25,0.3,0.5,0.7,0.8,0.95}, with monotonicity
constraints at the virtual poin{®.15, 0.35,0.55,0.75}.

Sincep(f, f'|x,y) was computed as samples from MCMC, we can approximate therpmrof
f* as

N
1
£ [x* = E x| ~ = £\ fi, f))- 22
PExy) = B pE )] N;m | £1) (22)

The MCMC samples outlined in Eq. (22) are generated over ¢logov|f; f']. This could be a
large vector, indicating a large latent function space,ciwhmay pose a challenge to MCMC.
Our experience indicates that one must start the MCMC saqali a good initial point, one
that is obtained either by finding the maximanposterioripoint (MAP) or by using a surrogate
or interpolation to find a feasible initial point fof; £'].

Note that this approach leads to the question of how to stieatumber and placement of
the operating pointX,,. Riihimaki and Vehtari (2010) point out that grid-basecdthoels suffer
from the curse of dimensionality and that a more efficieratetfy may be to successively add
new operating points tX,, by computing where derivatives of the GP are most likely to be
negative for the current choice df,,. We did not find much discussion of the placement of
virtual points for this method or for the discrete constraiethod in Section 4.2. The issue of
optimal point placement for the virtual points could be added with some of the low-rank
methods discussed in Section 8.3.

5.2 Monotonicity Using Truncated Gaussian Distributions

The approach, discussed in Section 4.2, for bounding Gaupsocesses at a finite set of virtual
points can naturally be extended to enforce monotonicitgstraints. Specifically, by treating the
partial derivative®) f /0x 4, as GPs with covariance kernel functions given by Eq. (20noro
tonicity constraints of the same form as Eq. (17) can be erfbat a discrete set éf, virtual
points, i.e.,

of

)>0, i=1,...,N,.
3$di(x) i

This is done by treating the partial derivatives/0x 4, as GPs with covariance kernel functions
given by Eq. (20) and using the joint Gaussian prodgsswith covariance matrix> given by
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Eqg. (19). Then, given datgX,y) for f, Da Veiga and Marrel (2012) replace the unconstrained
predictor [Eq. (11)] by the predictor

f(X)=y and 0< ﬁ(:1:1-) forall i=1,2..N,|. (23)

E
8$di

f(x%)

This is analogous to the predictor [Eq. (12)] used for bouodstraints. As a postprocessing
step, per Eq. (23) the density (i, ) for £’ over the virtual pointgx;} Y, is replaced by the
density7 N (i, 33, 0, 0o); this density is discussed more in Section 8.1.

5.3 Monotonic Splines

The spline formulation, presented in Section 4.4 to glgbaiiforce a bound constraint of the
form f > a, may be extended easily to enforce monotonicity conssainbther linear inequal-
ities. For example, if” is a first-order (backward or forward) finite difference matelating
neighboring spline values, then monotonicity is enforctbally by sampling values of the
knotsé subject to the constraint

C& >0,

see Lbpez-Lopera et al. (2018) or Maatouk and Bay (2017 Ftequality is also used in
the rejection sampler of Section 4.4.2 as a constraint tetifyethe MAP estimate to increase
the sampling efficiency. Bound and monotonicity constsairdn be enforced simultaneously
by requiring bothé, > b andC¢& > 0 in the sampling, though the acceptance ratio drops
substantially with combined constraints.

5.4 Convexity

The sections above illustrated how a method for bound caingtrcan be used with first deriva-
tives of a Gaussian procegsto enforcedf/0x; > 0 and thereby monotonicity for the GR
either globally, as in Section 5.3 or at a finite set of virfpaints, as in Sections 5.1 and 5.2. Sim-
ilar nonnegativity constraints can be applied to higheivdéves of f as well. In one dimension,
this can be used to enforce convexity via the constraint

0%f

— >0 24

5.2 2 0, (24)
treating the left-hand side as a GP with covariance kernel

%k
Ox20x'?

Although monotonicity can be enforced in arbitrary dimensi, convexity presents a chal-
lenge in dimensions greater than one, since it cannot beess@d as a simple linear inequality
involving the derivatives of, as in Eq. (24). As Da Veiga and Marrel (2012) point out, ecyor
ing convexity in higher dimensions requires that Eq. (24)dq@aced by the condition that the
Hessian off be positive semidefinite. Sylvester’s criterion yields dugiivalent condition that
each leading principal minor determinant of the Hessiandsitige. Such inequality constraints
involve polynomials in partial derivatives gf. As polynomial functions of GPs are no longer
GPs, the bound constraint methods in Section 4 no longey.appl

(x,2).
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While higher dimensional convexity constraints are owtslte scope of this survey, several
references we have mentioned discuss the implementaticonwiexity-constrained Gaussian
processes in greater detail. Da Veiga and Marrel (2012udsshow convexity in one dimension
of the form Eq. (24) can be enforced at virtual points usirgy(ffartially) truncated multinormal,
in a way analogous to Section 5.2, while convexity in two disiens can be enforced using
the elliptically truncated multinormal distribution. M@ak and Bay (2017) and Lopez-Lopera
et al. (2018) point out that for the spline basis considene8dction 4.4, convexity in one di-
mension amounts to requiring that the successive diffeatthe values at the spline knots are
increasing in magnitude, i.e.,

Erp1 — & > & — &1 forall k.

This is equivalent to requiring that the second-order fidifferences be positive. This can also
easily be applied in higher dimensions to guarantee thabend partial derivatives are positive
globally, although this does not imply convexity.

6. DIFFERENTIAL EQUATION CONSTRAINTS
Gaussian processes may be constrained to satisfy linesatopeonstraints of the form

Lu = f, (25)
given data orf andu. When/. is a linear partial differential operator of the form

80( 80( 80(1 acxz acxd
L= Z Ooc(x) axocv X = (CX]_, [EE) o‘d)a IxX = 8xcx1 axrxz "'axcxd ) (26)
[ 1 2

d

Eqg. (25) can be used to constrain GP predictions to satisiwhkrphysical laws expressed as
linear partial differential equations. In this section wavey methods to constraint GPs with
PDE constraints of the form Eq. (25).

6.1 Block Covariance Kernel

The work of Raissi et al. (2017) introduced a joint GPR apphahat uses a four-block covari-
ance kernel, allowing observations of both the solutioand the forcingf to be utilized. The
principle behind this approach is thatifx) is a GP with mean functiom(x) and covariance
kernelk(x,x’),

u ~ GP[m(x), k(x,x")], (27)

and ifm(-) andk(-, x’) belong to the domain of, thenZ, £, k(x, x’) defines a valid covariance
kernel for a GP with mean functiofi,m(x). This Gaussian process is denotad

Lu ~ GP[Lxm(x), Ly Ly k(x,x")]. (28)

Note from Eq. (26) that the operatdrtakes as input a function of a single varialdleWhen
applying L to a function of two variables such &$x, x’), we use a subscript as in Eq. (28) to
denote the application @ in the indicated variable, i.e., considering the inpuftas a function
of the indicated variable only. Note that a special case isf for £ = 9/0z,4,, appeared in
Section 5.1. The same formula [Eq. (28)] was utilized inieaorks on GPR with differential
equation constraints by Graepel (2003) and Sarkka (2011)
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The notationu for the GP [Eq. (28)] is suggested by noting that if one coyddla L to
the samples of the GR, then the mean of the resulting stochastic progds$would indeed be
given by

meanL[u](x)] = E [£[u](x)] = LE [u(x)] = Lm(x),
and the covariance by
cov[L[u] (x), L[u](x")] = E{Lx[u(x)]Lx [u(x)]} = E{Lx L [u(x)u(x')]}
= L E{ Ly [u(x)u(x")]} = LuLyxE [u(x)u(x")] (29)
= Ly Ly {coviu(x),u(x)]} = Ll k(x,x").

This justification is formal, as in general the samples of ghecessCu defined by Eq. (28)
cannot be identified a8 applied to the samples af(Driscoll, 1973; Kanagawa et al., 2018); a
rigorous interpretation involves the posterior predicti@nd reproducing kernel Hilbert spaces
of the processes and Lu (Berlinet and Thomas-Agnan, 2011; Seeger, 2004).

If scattered measurements on the source terryi in Eq. (25) are available at domain points
X, then this can be used to train and obtain predictionsiofrom the GP [Eq. (28)] in the
standard way. If, in addition, measuremegtsof « are available at domain poinfs,, a GP
co-kriging procedure can be used. In this setting, physicssedge of the form Eq. (25) enters
via the datg X s,y y) and can be used to improve prediction accuracy and reduizeearof the
GPR ofu. The co-kriging procedure requires forming the joint Garsprocessu; f]. Similarly
to the derivative case considered in Section 5.1, the cawvegi matrix of the resulting GP is a
four block matrix assembled from the covariance matrix & &P [Eq. (27)] for the solution
u, the covariance of the GP Eq. (28) for the forcing functiamg @#he cross terms. Given the
covariance kernél(x, x’) for u, the covariance kernel of this joint GP is

PYEESTRNEST AN RSP SY Lowk(x1,%5)| _ [Ku K2 (30)
X2 ’ Xlz o Exk(XZ,Xi) Exﬁx/k(XQ,Xlz) o Kgl Kzz )
The covariance betweer(x) and f (x’) is given byL. k(x1, x5) in the upper right block of the
kernel and can be justified by a calculation similar to Eq);(88e Raissi et al. (2017). Similarly,

the covariance betweer(x’) and f(x) is represented by the bottom left blo€l k(x2, x}) of
the kernel. In this notation, the joint Gaussian proces$ufof] is then

o ~or (o) vy e ). e

whereK (X1, Xp) = [Ka1(Xo, X1)] .
Given data(X,,y,) and(X;,y), the GP kernel hyperparameters may be trained by as-
sembling the four-block covariance matrix in Eq. (31) wikh = X,,, Xo = X¢:

K11(Xy, Xy) Klz(Xu,Xf)]

32
Ko (X, Xu) Koo(Xy, Xy) 42

Kdata = |:

and minimizing the negative log marginal likelihood
1 _ 1 N
- 10gp(Yuan|Xmea e) = é (y - m)T Kda%a(y - m) + é 10g |Kdatal + E IOg(Zﬂ-)a

with y = { z; ] andm = { £2§§;§ ]
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In the presence of noise on measurements ahd f, a standard approach analogous to the
Gaussian likelihood [Eq. (4)] is to introduce two noise hy@ameters,, ando; and replace
the four-block covariance matrix [EqQ. (32)] with

K11(Xu, Xu) + 05In,  Kia(Xo, Xy)
Ko(Xy, Xu) Kpo(Xp, Xyp) + 0%y, |

The inclusion of the additional terms dependingognand aﬁ corresponds to an assumption of
uncorrelated white noise on the measureméptandYy, i.e.,

Y, :u(Xu)+€uv Yf :.f(Xf)+€fa

with e, ~ (0, 021, ) and independently; ~ N (0, 01y, ), given N, data points fou and
N data points forf.

The implementation of the constrained Gaussian procesekitq. (30)] for constraints of
the form (25) raises several computational problems. Tiseifirthe computation of .k and
L« Ly k. The most ideal scenario is that in whigthas an analytical formula andis a linear
differential operator, so that these expressions may beuated in closed form by hand or with
a symbolic computational software such as Mathematicas Wais the approach used for the
examples in Raissi et al. (2017, 2018), and Raissi and Kaakia (2018), including for the
heat equation, Burgers’s equation, Korteweg—de Vriestamuaand Navier—Stokes equations.
The nonlinear PDEs listed here were treated using an appteginearization. An example
of k£ being parametrized by a neural network (which allows déxiea to be computed using
backpropagation) was also considered in Raissi et al. (Z0t&e Burgers’s equation.

Closed form expressions for the covariance kernel [Eq.](@@atly simplify the imple-
mentation compared to numerical approximationfgf and L, L.k using finite-differences
or series expansions. As the size of the dataset and ther#fersize of the covariance matrix
[Eq. (30)] increases, our numerical experiments suggasttty numerical errors in the approx-
imation of the action of rapidly lead to the ill-conditioning of the covariance niatiThis in
turn can lead to artifacts in the predictions or failure okimaum likelihood estimation with the
constrained GP. lll-conditioning can be reduced by addimgahoc regularization on the diag-
onal of Eq. (30) at the cost of reducing the accuracy of theaession, potentially negating the
benefit of the added constraint. For more general constrafrthe form Eg. (25), depending on
the form ofk or £, numerical methods may be unavoidable. For example, irsRatigl. (2017)
and Gulian et al. (2019), fractional-order PDE constrajataounting toC being a nonlocal in-
tegral operator with singular kernel) were considered.tRese constraints, the kernel blocks
Lyk and L4 Ly k had no closed formula. To approximate these terms, a seqgssion was
used in Raissi et al. (2017), and in Gulian et al. (2019) a migalemethod was developed in-
volving Fourier space representationsfgft and L, L,k with Gaussian quadrature for Fourier
transform inversion.

A second problem is that the formulation [Eq. 31] require®gging the constraint [Eq. (25)]
at discrete points oX ;. Therefore, even if we have complete knowledge of the caimstiy
equation [Eqg. (25)] and the forcing terfiy enhancing the GPR far by including a high num-
ber of virtual data points makes inference as well as maxirtikelihood estimation compu-
tationally expensive and prone to ill-conditioning. Inghegard, the computational approaches
discussed in Section 8.3, particularly the subset of dapmcaghes in Section 8.3.1, may be
helpful. Figure 3 shows an example of a one-dimensional GP sguared exponential kernel
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FIG. 3: Comparison of unconstrained and PDE constrained GP. TapReconstruction of: (red line)
with an unconstrained GP (black line) using 10 data poiets$ @ots) iN0.2, 0.8]. Top-right: Reconstruction
of u (red solid line) with a PDE-constrained GP (black dotted)insing the same 10 data points (red dots)
in [0.2,0.8]. Bottom: Right-hand sid¢ of the PDE, with 10 additional data points i@, 1] used for the
PDE constraint. Note the improved accuracy of the consth@®P outsid¢0.2, 0.8], due to this constraint
data.

constrained to satisfy the differential equatios-1?u/dz? on the interval0, 1]. Data is gener-
ated from sampling the solutian= (1/8)[(2x — 1)? — 1] at 10 points between 0.2 and 0.8. Both
the constrained and unconstrained GPs give a reasonahlyadéececonstruction oj0.2, 0.8],
but the unconstrained GP has poor accuracy outside thistempl. On the other hand, the con-
strained GP is augmented by dgta= d?u/dz? = 1 at 10 additional points between 0 and 1,
leading to an improved reconstructionwbutside[0.2, 0.8].

6.2 Transformed Covariance Kernel

A different approach to constrain Gaussian processes Igreliftial equations is to design a
specialized covariance kernel such that the GP satisfiesotiigtraint globally, rather than at a
discrete set of auxiliary data points as in Section 6.1. Wethod dates back to the divergence-
free kernel of Narcowich and Ward (1994) for vector-valudes@n addition to being a stronger
enforcement of the constraint, this method also avoids dingpeitational burden induced by the
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four-block covariance matrix. On the other hand, it has ntioriéed applicability and specialized
implementation, as it requires analytically solving for ertkel with the desired constraining
property. The authors of Jidling et al. (2017) propose figdifinear operato, which maps a
certain class of functions (modeled by a GP) to the null spditlee linear differential operator
defining the constraint. The operatgican then be used to compute the constrained kernel as a
transformation of a starting kernel. We now summarize tpggraach, provide some examples,
and compare it in greater detail to other approaches.

Given a linear operatof, and a vector-valued GP, described using a matrix-valued co-
variance kernel function that encodes the covariance legtwlee entries of the vectdy, the
constraint

Lf =0, (33)
is satisfied iff can be represented as

f = 0xg, (34)
for a transformationgj, such that

LGy =0. (35)

In other words, the range of the operagyr lies in the nullspace of the operatgy,. Further,
provided thatj. is also a linear operator, df is a GP with covariance kernk}, then by Eq. (34)
f is also a GP with covariance kernel

ke = Gkl (36)

Above and throughout this section, we follow Jidling et 2017) in using the notatiof kg G,
for the matrix-valued function witlti, j)-entry >, 5=, [Gxl,;. [Gx']; [k (x,%")],,; note that if
g and thereforés, are scalar valued, this reduces to Eq. (29). If the oper&or (35)] can be
solved, one can choose a keriagland define a GF using Eq. (36), which satisfies the con-
straint [EqQ. (33)]. The constraint is satisfied globally b structure of the covariance kernel,
no data is required to enforce it. We refer to this as the foarmed covariance kernel approach.
Prototypical examples applying the constraint [Eq. (38§] divergence-free and curl-free con-
straints on the vector fielff an excellent illustration of such GP vector fields is givgrMacédo
and Castro (2008).

As an example of how to apply Eqg. (33), consider the enforegimfethe curl-free constraint

Lof =V xf=0,

for a vector fieldf: R® — R3. A curl-free vector field can be writteh = Vg, for a scalar
functiong: R® — R. So, forL, = V x the choice

dg o
3%1 3%1
B o 1o}
Gx=V, ie, G=|3L|=|25]|9
Og 0
ox3 Ox3

satisfies Eq. (35). Thus, placing a GP with scalar-valueduGarmce kernek,(x,x’) on g leads
via Eq. (36) to a 3x 3 matrix-valued covariance kernel:

92 9?2 92
dz10x]  Owx10x)  Ox10x}
N _ T _ 52 8? 52 ’
kcurl—free(xax ) = gxkiggx = | 0220z, Oz207, x,07] kig (X,X )
92 92 92

Ox30x] Oz30x) O30z}
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Here, k, is a scalar-valued kernel. If the squared exponential tavee kernelk,(x,x’) =
yve~Ix=x'’/(26%) 5 ysed, this leads to a closed-form kernel:

X2 x—x x—x"\ "
kcurl—free(xax/) = 29%6 20 [Id - ( 0 ) ( 0 )

see Jidling etal. (2017) or Jidling (2017). We have derivésifor dimensionl = 3, butitis valid

in any dimension > 2 (Macédo and Castro, 2008). The specific covariance kffEuel(37)]
was introduced by Fuselier (2007) in the context of reprauykernel Hilbert spaces, and was
also used by Baldassarre et al. (2010); Macédo and Ca&§io8)2Solin et al. (2018); Wahlstrom
(2015); Wahlstrom et al. (2013).

In a similar way, one can enforce a divergence-free cond¥iox f = 0 for a vector-valued
GPf by writing f = V x g and placing a GP prior on a vector figldasV(V x g) = 0 (Jidling
etal., 2017). Modeling the componentgods independent and placing a diagonal matrix-valued
squared exponential kernel on it leads to divergence-fsear@ance kernels fdf of the form

n Y e [ x—x\ (x-x\T Ix —yl°
Kdiv-free(Xx, ") = 02¢ ™ 0 0 +{(d—=1) - 0 Iigp, (38)

see Baldassarre et al. (2010), Jidling (2017), Macédo astr€(2008), Wahlstrom (2015). The
specific divergence-free kernel [Eq. (38)] appears to haenbintroduced by Narcowich and
Ward (1994).

In all these examples, solving the key operator equation (B8)] has been an easy appli-
cation of vector calculus identities. The work of Jidlingagt (2017) proposes an approach for
solving Eq. (35) for general linear constraints involvingtiorder differential operators, which
generalizes the curl-free and divergence-free examplesekter, solving Eq. (35) in general is
difficult, depends dramatically of, and may introduce significant computational challenges.
For example, to constrain a scalar function on the unit disk {z = (z1,22) : |z| < 1}in
R? to satisfy Poisson’s equation

, (37)

pu_ P P
ox3 013
i.e., the constraint [Eq. (33)] witd, = A, one could exploit Poisson’s kernel formula

u(r,0) =Gg = %/ P.(0 —t)g(e)dt, (39)

—T

for a boundary valug defined ondD. More preciselyg € L(T). Thus, one could model
with an appropriate GP with covariance kerkgland use&s in Eq. (39) to satisfy Eq. (35) and
then to define a kerndl, via Eq. (36). However, in this cagd is an integral operator, which
would make evaluation of Eq. (36) more difficult than the weaalculus examples discussed
above. This illustrates that imposing the constraint vigieg the operator equation [Eg. (35)]
requires using analytical representations of the solutidhe constraint equation [Eq. (33)] that
vary significantly from case to case. The same issue ishidltesi by an example of a biharmonic
constraint in one dimension for a scalar GP in Jidling (20T#)s is in contrast to the block co-
variance method of Section 6.1, which involves more stitéogivard computation of the kernel
blocks in Eqg. (30).
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6.3 Empirical Mean and Covariance

Given an ensemble of realizations of a random fiéldn a set of grid points and a smaller set of
high-fidelity data on a subset of the low-fidelity grid pointang et al. (2018) built a Gaussian
process for the unknown field over the unstructured griddtsat passes through the high-fidelity
data, at the same time ensuring that the GP satisfies the PEEogenerate the low-fidelity
ensemble. The ensemble data may be obtained from a largesnwfrdimulations over a single
unstructured grid of a deterministic solver for a linear PB&mpling the stochastic parameters
in the PDE according to some distribution. The high fidelitgyntonsist of field data obtained
through a costly experiment, a situation common in gecsiedi

The idea of the article of Yang et al. (2018) is to compute tlamand covariance function
of the GP empirically from these realizations of the randosidft”. This removes the need
to infer the hyperparameters of a covariance functionebst one simply calculates the mean
and covariance matrix from the random field realizationsdews. Using the notation of Yang
et al. (2018), we assume that we haderealizationsY ™ (x) of the output fieldY (x) for x in
thed-dimensional gridx; } ¥, (the low-fidelity data). Then the mean and covariance kearel

respectively given by
M

() ~ e(x) = == 30 ¥ (),
m=1

and

M
1
k(x,x") & kuc(x,x') = M—1 Zl Y™ (x) — pmc ()] [V (') — 1w (x')].
Hence, withY™ = [Y"(x1), ..., Y™ (xx)] " anduvc = [umc(X1), ..., bmc (xn)] T, the covari-
ance matrix is approximated by
1 M
C~Cmc = V1 Z (Y™ — ) (Y™ = )
m=1

The above formulas for the mean and covariance of the GP beaurtstructured gridx; } ¥
can then be used in the usual prediction formula [Eq. (8)}Herposterior mean and variance at
any pointin the grid, conditioned on high-fidelity data au#set of points on the grid.

It is important to note that this approach does not assuntierssaity of the GP, nor does it
assume a specific form of the covariance function. Yang €2all8) have shown that physical
constraints in the form of a deterministic linear operatier guaranteed to be satisfied within
a certain error in the resulting prediction when using thipraach. The method was extended
to model discrepancy between the low- and high-fidelity datdang et al. (2019). They also
provide an estimate of the error in preserving the physioabtraints. However, as the method
uses an empirical mean and covariance, it cannot integédatthe field between the points
where the stochastic realizations are available. The dt€P® for prediction at an arbitrary
pointx*, represented by Eg. (8), is not available, as the covarikecel function is bypassed
entirely; the covariance is obtained directly in matrixifoover the unstructured grid.

6.4 Specialized Kernel Construction

Albert and Rath (2020) developed an approach that is suwe@PR with linear PDE constraints
of the form Eq. (25) for the case of vanishing or localizedrseuermsf. In the latter case, the
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solutionu is represented as a solution to the homogeneous equatiea f and an inhomoge-
neous contribution obtained as a linear model over fundémhsalutions corresponding to the
point sources.

Focusing on the GPR for the solutiarto the homogeneous equatidn = 0, a specalized
kernel functionk is derived fromZ such that the GPR prediction satisfies the equation exactly.
In this sense, the approach is similar to that of Sectiond@tBopugh the kernel is not obtained
from a transformation of a prior kernel but rather is constied from solutions to the problem
Lu = 0. Albert and Rath (2020) show that such a covariance kernst satisfy

Lyk(x, )L‘,x, =0, (40)
in the notation of Section 6.2, and seek kerrieis the form of a Mercer series

Zd) x)S5 ;i (x'), (41)

for basis functionsp; and matrix¥,. They point out that convolution kernels can also be con-
sidered. Albert and Rath (2020) study the Laplace, heatHerdholtz equations, performing
MLE and inferring the solution: from the PDE constraint and scattered observations. They
construct kernels of the form E41, which satisfy Eq. (40) élesting{ ¢, } to be an orthogonal
basis of solution to the corresponding equations. Althatgiresulting kernels are not station-
ary and require analytical construction, they result inioyed reconstructions of solutions from
the observations compared to squared exponential keMvelaote that similar constructions of
kernels—as expansions in a suitable basis—are utilizdteiapproach of Solin and Kok (2019)

in the following section to enforce boundary conditions.

7. BOUNDARY CONDITION CONSTRAINTS

Boundary conditions and values are yet another type of fpmowledge that may be incor-
porated into Gaussian process regression. In many expaaireetups, measurements can be
taken at the boundaries of a system in a cheap and noninwveawthat permits nearly complete
knowledge of the boundary values of an unknown field. In otilases, the boundary values may
be fully known or controlled by the user, such as for a systemeat bath. Theoretically, var-
ious boundary conditions are often needed to complete therigion of a well-posed model.
Thus, intrinsic boundary condition constraints on a GP,gmsed to the treatment of boundary
measurements as scattered data, may be of interest inapig both for improved accuracy
and to avoid the computational burden of an expanded dat@ebne-dimensional GPs, en-
forcing Dirichlet boundary conditions is trivial; noisske observations at the boundary can be
used to produce a posterior mean and covariance that stiesfyoundary conditions exactly.
In higher dimensions, however, it is nontrivial to constr@Ps to satisfy boundary conditions
globally over a continuous boundary. Graepel (2003) conttd an example of GPR on the
two-dimensional unit squar@®, 1) with Dirichlet boundary conditions by writing the solution
as a product of a factor represented by a GP and an analytix,fadich was identically zero at
the boundary. We discuss a more general approach basedairaspgpansions below.
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7.1 Spectral Expansion Approach

The work of Solin and Kok (2019) introduced a method basedhenspectral expansion of a
desired stationary isotropic covariance kernel

k(x,x") = k(|x — x'|), (42)

in eigenfunctions of the Laplacian. For enforcing zero &itéet boundary values on a domain
Q, Solin and Kok (2019) use thepectral densityFourier transform) of the kernel [Eq. (42)],

s(w) = / e XL (x| dx. (43)
]Rd
This enters into the approximation of the kernel:
ZS (Ae)de(x)de(x), (44)
(=1

whereA; andd; are the Dirichlet eigenvalues and eigenfunctions, resmdgtof the Laplacian
on the domair2. In Eq. (44),s(-) is thought of as a function of a scalar variable; sikcis
isotropic in Eq. (42), so is the Fourier transforfw) = s(|w|). Note that the expansion (44)
yields a covariance that is zero where 99 or x’ € 992. Thus if the mean of the GP satisfies
the zero boundary conditions, Gaussian process predsctising the series (44) will satisfy the
boundary condition as well.

7.2 Implementation

The firstimplementation task that presents itself is corfpor of the Dirichlet spectrurf),, ¢;)
of the Laplacian

Ady =AMy In Q,
d,=0 on 09Q.

For basic domains such as rectangles, cylinders, or sphhiean be solved in closed form.
For general domains, the problem must be discretized ang@oximate spectrum computed.
Solin and Kok (2019) obtain an approximate spectrum by disgng the Laplace operator with
a finite difference formula and applying a correction fadtmthe eigenvalues of the resulting
matrix. There are many other approaches for computing tkeetapn of the Laplacian with
various boundary conditions; see, e.g., Song et al. (20dr7af approach using the spectral
element method for calculating both Dirichlet and Neumgmectrum in complex geometries.
Evaluation ofs(A,), wheres denotes the spectral density [Eq. (43)] in Eq. (44), is tsihc
not difficult sinces is available in closed form for many stationary kernels saglhe squared
exponential (SE) and Matéri4, ) kernels:

2n2
sse(|wl; v, 8) = y2(2r02)4/2e~I1wI0%/2

2P T v+ d/2) (2 o)
02V T (v) gz ’

s, (|wl;v,0) :Y
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Next, we review from Solin and Kok (2019) and Solin and Sark&019) how the formulas
for Gaussian processes regression and training can bessgprasing the the formulation (44).
Givenn data points{ (x;, y;) }}_,, the covariance matrix is approximated using Eq. (44) as

m

and them x m matrix, A = diag(s(A,)), 1 < ¢ < m, can be written as
K~ ®ADT.

Thus, the covariance matri is diagonalized, and for a poisat: we can write thex x 1 vector

n

ko = [k(x", %)y & | Y be(xi)sA)be(x)| = AR,
=1 =1

where then x 1 vector®, is defined by
[@.], = de(x™), 1< L<m.

The Woodbury formula can be used to obtain the following esgpions for the posterior mean
and variance over a poist', given a Gaussian likelihoag = f(x;) +€;, €; ~ N(0, o?) (Solin
and Kok, 2019):

E[f(x")] = k! (K +0°I)y
=@/ (@' +o’A Y Ty,
V[f(x*)] = k(x*,x*) — k] (K + 0°I) "k,
=0?®] (¢ ® + 0’A7H) 1,

(45)

Strategies for using this method with non-Gaussian likalits are also discussed by Solin and
Kok (2019), although we do not go over them here. For use irefpgrameter training, the
following formulas were derived in Solin and Sarkka (2pafd Solin and Kok (2019) for the
negative log marginal likelihood

- 1& 1
—p(y|X,0) = i Zm log 0% + > Zlog (AM) + > log det (GzAfl + <I>T<I>)
=1 (46)

+2 log(2m) + [yTy —y'®(c®At + <I>T<I>)_1 @Ty} ,

2 202
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and in Solin and Sarkka (2019) for its derivative:

op(y|X,0) 1~ 1 0Ny o2 _ 1., 0A
—7:52— — = Tr{ (At eTe) A2

00y

LA

T 251 Te) L
Y7o (A1 3T D) (A "

) (PA " +aT0) BTy,

opy|X,0) n-m 1 241 Ta) La-1 (47)
S = 5oz +§Tr((oA +0T®) A )

+ 2—(172yT<I> (A "1+ & ®) TA (oA 1+ 0 ®)”

1<I>Ty

- % YTy -y e (At eTa) aTy].

Note thatA is defined by the spectral densityof the kernelk, which clearly depends on the
kernel hyperparametefs= [6,]; however,® does not. Typically, derivatives ¢f with respect
to 0, can be computed in closed form, which along with formulag é4fl (47) enables accurate
first-order optimization of the kernel hyperparameters.

7.3 Extensions

The expansion in Solin and Sarkka (2019) was originallyettged for the computational ad-
vantages of using a low rank approximation to a kernel (seé@e8.3.2 for a discussion of this
aspect) rather than for boundary condition constraintsiIs€quently, the discussions in Solin
and Kok (2019) and Solin and Sarkka (2019) focused onlyasiodic and zero Dirichlet bound-
ary conditions. One possible way to constrain a Gaussiatepsj to satisfy nonzero Dirichlet
conditions would be to writgf = (f — g) + g, whereg is a harmonic function that satisfies
a given nonzero Dirichlet condition, and to model- g as a Gaussian process that satisfies a
zero Dirichlet condition using the above approach. Solihléok (2019) remark that the method
could also be extended to Neumann boundary conditions Imgulse Neumann eigenfunctions
of the Laplacian, although no examples are given. Anothatdtion is that spectral expansions
in Solin and Kok (2019) and Solin and Sarkka (2019) are aolysidered for isotropic kernels,
but they suggest that the approach can be extended to theotropmic case.

8. COMPUTATIONAL CONSIDERATIONS

In this section, we describe methods that can help reduceaimputational cost of construct-
ing constrained GP models. Typically, building a consediGP is significantly more expensive
than training an unconstrained GP because of larger dataegresenting derivative constraints,
bounds, etc., at virtual points. Consequently, computatig efficient strategies for building
constrained GPs are paramount. In Section 8.1 we discussitfeated multivariate normal dis-
tribution, which is a fundamental component of the appreadiscussed in Sections 4.1, 4.2,
4.4, and 5.2. We then discuss the related problem of maxinketihood estimation of the hy-
perparameters of constrained GPs constructed using time sgiproach discussed in Sections
4.4, 5.3, and 5.4. The final Section 8.3 focuses on reduciaghtimerical linear algebra cost
of inference, using low-rank and Kronecker methods, respg. The majority of approaches
surveyed in these two sections were developed for uncomstt&Ps; however, some methods
have been applied in the constrained setting. Since suckmcahrecipes are the focus of much
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deeper survey articles such as Quifionero-Candela anduRasm(2005a); Quifionero-Candela
and Rasmussen (2005b), we have intentionally kept our sssau short, while providing refer-
ences to applications in constrained GPR where available.

8.1 The Truncated Multivariate Normal Distribution

Given a positive-definite covariance matbixand vectors, b € R? defining a rectangléa <

x < b}, the truncated normal distribution is the conditional idisttion of the random variable
z ~ N (1,Y), givena < x < b. The density7V (i, 3, a, b) of the truncated normal can be
expressed as

TN (65,2 b) = =220 () (48)

where the normalization constant

bi pbo by
C = / / N (x5, X)) dx1dx;...dxq
a1 Jap aq (49)

1 b1 b2 by 1 . .
=m0 0TS ) dsadee s
Jar Jaz Jag

is the probability that a sample &f (i, X) lies in{a < x < b}.

For generak and dimensiom, computing the normalization constant and sampling fraen th
truncated multinormal distribution [Eq. (48)] can be diffitand require specialized methods. Of
course, from the definition Eq. (49) these two problems dedad. However, they appear in two
different contexts. Calculating integrals of the form E£R), known as Gaussian orthant proba-
bilities, is called for in constrained maximum likelihoostienation of the GPR hyperparameters,
while sampling Eq. (48) is needed for posterior predictiosaveral approaches discussed above.
Therefore, we discuss sampling first and discuss evaluafi@aussian orthant probabilities in
the next Section 8.2.

While there are several possible approaches to sampling Eq. (48), simple Monte Carlo
methods scale poorly to high dimensions. One such examm@getion sampling from the
mode—was discussed in Section 4.4.2. In principle, it issjibs to use a Metropolis—Hastings
approach to sample the values of the knots, but it is expéicedhe dimensionality of the chain
for a large number of splines is likely to slow down the cogesrce of the chain. Several Markov
chain Monte Carlo (MCMC) methods were studied by Lopezérapet al. (2018) for sampling
the truncated multivariate normal posterior distributibat arises in the spline approach de-
scribed in Section 4.4. Comparison of expected sample sitgan suggested that Hamiltonian
Monte Carlo (HMC) is the most efficient sampler in the settirighat article. A different ap-
proach for sampling Eq. (48), based upon elliptical slicaging and the fast Fourier transform,
was presented in Ray et al. (2019).

8.2 Constrained Maximum Likelihood Estimation for Splines

We review the work of Lopez-Lopera et al. (2018) which dsmes the maximum likelihood
estimation of hyperparameters within the spline appro&xtudsed in Sections 4.4 and 5.3. The
starting point is the constrained log marginal likelihoachdtion given the constraints € C,
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where we have denotetl= {a < & < b}. This is based on the posterior dengity(y|é, € C)
of y given the constraing € C, which by Bayes’s rule can be expressed as

(y)Po(E €C|PE =)
Py(§€0)

Taking the logarithm yields a constrained log marginallifkeod function:

po(yle e C) =22

Lemie = logpe(y|E € C)
= logpe(y) +log Po(& € C|®E = y) — log Py(& € C) (50)
= LuLe +log Po(& € C|PE =y) —log Py (& € C).

In the first term,pg(y) refers to the probability density function of the randomiable y
with hyperparameter; thus, the first term is simply the unconstrained log maddikelihood
[Eq. (6)], which we denot&y . In the second and third termBy refers to the probability of
the indicated events. Asandé|{®¢& = y} are both normally distributed by equations Egs. (1)
and (8), respectively, the two last terms in Eqg. (50) can h@essed as integrals of a normal
density ovelC, just like the normalization constant Eq. (49). Such ingcan be reduced to
integrals over orthants, so the last two terms in Eq. (50)yefierred to in Lopez-Lopera et al.
(2018) as Gaussian orthant probabilities.

Unlike the sampling of Eq. (48), for which computing suchempals can be avoided with
MCMC, calculation of Gaussian orthant probabilities is woidable if the user wants to train
the kernel hyperparameters using the constrained obgefttivction [Eq. (50)], which we refer
to as cMLE. A thorough discussion of numerical approachesuiocated Gaussian integrals
is found in Genz and Bretz (2009). Lopez-Lopera et al. (2Qit#ize the minimax exponen-
tial tilting method of Botev (2017), reported to be feasifue quadrature of Gaussian integrals
in dimensions as high as 100, to compute the Gaussian ontinababilities in Eq. (50) and
compare cMLE with MLE. Another current drawback of cMLE isaththe gradient ofZ ¢y e
is not available in closed form, unlike the gradient@f e (Rasmussen and Williams, 2006).
Thus, in Lopez-Lopera et al. (2018), MLE was performed gsrlimited-memory version of
the Broyden—Fletcher—Goldfarb—Shanno algorithm (L-BF@8imizer, while cMLE was per-
formed using the method of moving asymptotes. This invol@etumerical approximation to
the gradient ofZ¢me, Which in our experience can impact the accuracy of the apation. Al-
though these numerical differences hamper direct comgraoé MLE and cMLE, it was found
by Lopez-Lopera et al. (2018) that for the case of limitethdeMLE can provide more accurate
estimation of hyperparameter values and confidence irgettvan MLE.

Lopez-Lopera et al. (2018) also studied under which cammstMLE and cMLE yield con-
sistent predictions of certain hyperparameters. This wethdr studied in Bachoc et al. (2019),
in which the authors perform an analysis of MLE and cMLE fa tiase of fixed-domain asymp-
totics, i.e., data in a fixed domain, as the number of datatpdémds to infinity. In this regime
of dense data, the effect of constraints is expected to émiiThe authors show that MLE and
CMLE yield consistent hyperparameters in this limit for #ase of boundedness, monotonic-
ity, and convexity constraints, and suggest quantitatetstto determine if the number of data
points is sufficient to suggest unconstrained MLE as opptstite more expensive cMLE.

8.3 Scalable Inference

As pointed out in Section 2, inference in GPR using the ett#iaing dataset (of siz&) scales
asO(N?) due to covariance matrix inversion. This is exacerbatecsotam methods to enforce
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constraints, such as the linear PDE constraints in Sectigmich require the inclusion of “vir-
tual” constraint points in the training data. There havenlfe® studies on improving scalability
of constrained GPs. Thus, in this section, we mention sépesaising approaches and possible
applications to constrained GPs. Some strategies, indutlie subset of data approach, the in-
ducing point approach, and the spectral expansion appraeekspecific to covariance matrices
of GPs. Other methods are based on general linear algelrzigees.

8.3.1 Subset of Data and Inducing Point Methods

One notable feature of increasing the density of trainirtg dathat the covariance matrix tends
to become more ill-conditioned, the result of partiallywadant information being added to the
matrix. In such situations it is worthwhile to identify a g of data that minimizes prediction
error subject to a maximum dataset size constraint (Q@if@Candela and Rasmussen, 2005b).
Greedy methods involve sequentially choosing points irdthreain that have the maximal pre-
dictive variance in order to reduce the uncertainty in thalfBP. This choice is natural and has
connections to information-theoretic metrics; other mestinclude cross-validation prediction
error, the likelihood value, or Bayesian mean-square ptiedi error. Rather than building a new
covariance matrix and inverting it for each added point, ovag take advantage of the Wood-
bury matrix inversion lemma and block matrix inversions tiiceently compute the inverse of
the covariance matrix (Quifionero-Candela and Rasmug86mp).

Other methods for performing subset selection are baseatahdpproximation. Frequently,
the function values far away from a point of interest may hiéttle influence on the function
value there. A simple strategy based on this idea is to s#leatearest neighbors to the target
point to form the prediction. The local approximation GP eggeh (Gramacy, 2016; Gramacy
and Apley, 2015) combines such local approximation withesedy search heuristic to identify
a better set of points to minimize the mean-squared predietiror at the location of interest.

Using a subset of points to form the GP corresponds to seteatsubset of the rows/columns
of a full covariance matrix to represent the dataset. Quéfio-Candela and Rasmussen (2005a)
generalize this to a broad set of low-rank approximatiorteédfull covariance matrix based on
inducing points. In these methods, a subset (sty®f the data is used to form an approximate
likelihood or prior for the entire dataset; all of the dataiged, but most of the data is modeled
as being conditionally dependent on a few inducing poinkss Teduces the cost of inference
from O(N3) to O(Nm?). The greedy methods discussed above may be applied tofidanti
optimal set of inducing points.

Such methods may be especially helpful for selection andephent of virtual points for
enforcing constraints. However, to our knowledge, thereeheot been any studies of this. An
important question is how to treat the two sets of data, imgimnd virtual, using these ap-
proaches.

8.3.2 Spectral Expansion Approximation

The approach of Section 7.1 for boundary condition con#isagan also be used for reduced
rank GPR (Hensman et al., 2017; Solin and Sarkka, 2019gxansion of a covariance kernel
in terms of the eigenvalues of the Laplacian with periodiarmary values in an artificial box
containing the data is used to approximate the covarianaeekeas in Eq. (44). The error of
approximation should be small if the boundaries of the baxsafficiently far from the data
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locations. Withm basis functions in expansion (44), formula (45) implies ihaerses are re-
quired only of matrices of size:. Therefore, inversion scales @&m?), while multiplication
for inference in Eq. (45) scales 8§m?N). Moreover, formulas (46) and (47), and the fact that
& does not depend on the kernel hyperparameters, imply thaiaime reduced-rank advantage
is present in hyperparameter training via MLE.

8.3.3 Linear Algebra Techniques

Rather than trying to reduce the effective size of the trjrand virtual constraint points, it is
possible to simply approximate covariance matrix inversising more general numerical linear
algebra techniques. We expect such methods to extend namliéyreo constrained GPs than the
methods of Section 8.3.1, although they may be less optinthhzay not inform the placement
of virtual constraint points.

The pseudo-inverse is often used to avoid the small eigeesahat can corrupt predictions
(Brunton and Kutz, 2019), although the singular value dgmasition or eigenvalue decompo-
sition are both computationally expensive as well. Hidnaral matrices are an efficient way of
approximating the full covariance matrix in a manner amémnéab fast inversion (Pouransari
et al., 2017). Sub-blocks of the matrix are replaced withdfix@nk approximations, using a
computational tree to organize the hierarchy of the matind operations on the full matrix
such as multiplication or inversion can be accomplishediefiily by operating on each of the
individual “leaves” of the tree. Geoga et al. (2019) appliéetarchical matrices methods to the
maximum likelihood estimation for Gaussian processes.

An alternative to inverting the covariance matrix is to sgtam optimization problem for a
matrix such that the error between the product of the matiilx the covariance matrix and the
identity matrix is minimized (Zhao and Liu, 2013). The s@uatto this linear program is, of
course, the precision matrix, but by adding/anpenalty term on the entries of the matrix to the
objective function as in the least absolute shrinkage aledtsen operator (LASSO) regression,
sparsity will be induced in the result. This estimator i€reéd to as constrained L1-minimization
for inverse matrix estimation (CLIME) (Cai et al., 2011).

Another popular approach for modeling sparsity in randootesses is to use a Gaussian
Markov random field (GMRF) (Rue and Tjelmeland, 2002; Sgidnyeé Rue, 2014). In a GMRF,
the data may be seen as forming an undirected graph wherts ptose to each other in data-
space are connected by an edge, and points far from eachaptheot. Thus while all points are
correlated with each other, most are only conditionallyatefent on each other; this translates
to a sparse precision matrix where the only off-diagonalientcorrespond to points that are
connected to each other. Different choices of the covagiaridths or kernels, such as truncated
or tapered kernels (Kaufman et al., 2008; Shaby and Rupp@t®), yield different levels of
sparsity in the final precision matrix.

8.3.4 Hierarchical Decomposition for Non-Gaussian Likelihoods

Constraints that rely on non-Gaussian likelihood wereawed in Sections 4.1.2 and 5.1. The re-
cent work of Flaxman et al. (2015) focuses on scalable infagevith non-Gaussian likelihoods
on dense multidimensional grids. The key assumption emglitie use of Kronecker formulas
is that the inputsX are on a multidimensional Cartesian grid

X=X13Xo®...® Xy,
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and the GP kernel in Eq. (3) is formed as a product of kernetssadnput dimensions
K(X, X) = Kl(Xl) ® Kz(Xz) ®R...Q0 Kd(Xd)

Under these conditions the storage requirements are rédiwa O(N?) to O(dN?/?), and the
complexity of inversion is reduced fro@(N3) to O(dN@+D/4), whereN is the cardinality
of the full tensor grid, i.e., the number of data points, & is the number of input points in
each dimension.

We review the key Kronecker algebra results, including igffitmatrix-vector multiplication
and eigendecomposition. For matrix-vector operations

(A® B)X =vec(BXA"),

wherev = vec(V') converts column-major formatted matrices to vectors. fgitér dimensions,
the expression above is applied recursively. In this apgrahe full matrix is never formed, and
individual steps rely only on operations with individualrkels ;. To compute the inverse
[K(X,X) + 02I)~Yin Eq. (8), we use the eigendecomposition for each keknek Q. A;Q;,
which results in

K+ T=(Q] ©Q; @...0Q) (MM ®...0Ag+ 2D Q10 Q2® ... 0 Qy).

The inverse is evaluated as

(K401t =(Q] ®Q; @...0Q) ) (MO®A®...0 A+ 02 HQ10Q2®...®Qq).

In this framework, the inverse of the full matrix now consist eigendecompositions of smaller
matrices.

9. CONCLUSION

Interest in machine learning for scientific applications mensified in recent years, in part due
to advances in algorithms, data storage, and computatéoradysis capabilities (Baker et al.,
2019; Stevens et al., 2020). Fundamental challengesestilhin when developing and using a
machine learning model for scientific applications, whichstnsatisfy physical principles. En-
forcing such principles as constraints helps ensure thevi@hof the model is consistent with
prior physical knowledge when queried in an extrapolategion. In other words, in addition to
supplementing limited or expensive scientific data, camsts help improve the generalizability
of the model in ways that simply increasing dataset size nowdyMany approaches have been
developed to perform physics-informed machine learninghis survey, we have focused on
constraint implementation in Gaussian processes, whiglpapular as machine-learned meta-
models or emulators for a computational simulation.

Our survey focused on several important classes of contri@ir Gaussian processes. These
included positivity or bound constraints on the Gaussiac@sses in Section 4. When positivity
constraints are applied to the derivatives of a Gaussiacegs) they lead to monotonicity and
convexity constraints as in Section 5. This is a special @tawf regression with a linear trans-
formation of a Gaussian process, which is the basis of Gaugsbcesses constrained by linear
differential equations reviewed in Section 6. We discussniolary value constrained Gaussian
processes in Section 7. Throughout, we see that constcaintbe enforced in an implicit way
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through data that satisfies the constraint, by constructi@etailored sample space, by deriva-
tion of a constrained covariance kernel, or by modifyingdabgut or likelihood of the Gaussian
process. The constraints may be enforced in a global sehadfjirdte set of virtual or auxil-
iary points, or only in an approximate sense. We have poitddtese aspects as key features
distinguishing the constraints in this survey.

Constraints introduce new practical challenges into th® @Bmework. These include the
analytical construction of sample spaces, transformationcovariance kernels that inherently
provide constraints; the sampling of truncated multiiarizormals or intractable posterior dis-
tributions that arise when using non-Gaussian likelihpdnlsreased data and covariance ma-
trix size when enforcing constraints with virtual data thestds to expanded four-block covari-
ance; calculation of eigenvalues/eigenfunctions in bedrdbmains with complex geometry; the
placement of virtual points or construction of spline grid$igher dimensions; and maximum
likelihood training (optimization) of the hyperparametaf constrained Gaussian processes.
Numerical issues are the focus of Section 8. In that sectierhave also reviewed established
numerical strategies for accelerating GPR. Some of thetmigues have been applied to con-
strained Gaussian processes in the literature, while treare not. In general, the adaptation of
computational strategies to constrained GPR is a relgtivel field, and best practices have not
yet been established. Moreover, while several codebasesligeen developed for constrained
GPR, suclGPSt uf f for non-Gaussian likelihoods (Vanhatalo et al., 2013) dad t neqGPR
package (Lopez-Lopera, 2018) for the spline approachudticy constrained MLE, constraints
have not made their way into the most widely used productiates for GPR. Furthering these
computational aspects of constrained GPR remains a pragrasea for future work.

The field of constrained Gaussian processes has made sghifidvances over the past
decade, and we expect significant development to continlue plrpose of this survey, while
nonexhaustive, has been to catalog and investigate sorhe ofdre common approaches, guide
the practitioner to identify which strategies are most appate for his or her needs, and point
out the new computational challenges of constrained Gamigsiocesses and how they can be
approached.
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