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Linear dynamical systems are considered in the form of ordinary differential equations or differential algebraic equa-
tions. We change their physical parameters into random variables to represent uncertainties. A stochastic Galerkin
method yields a larger linear dynamical system satisfied by an approximation of the random processes. If the original
systems own a high dimensionality, then a model order reduction is required to decrease the complexity. We investigate
two approaches: the system of the stochastic Galerkin scheme is reduced and, vice versa, the original systems are reduced
followed by an application of the stochastic Galerkin method. The properties are analyzed in case of reductions based on
moment matching with the Arnoldi algorithm. We present numerical computations for two test examples.
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1. INTRODUCTION

In science and engineering, dynamical systems of ordinary differential equations (ODEs) or differential algebraic
equations (DAEs) often appear as mathematical models. The systems include physical parameters, which may exhibit
uncertainties due to measurement errors or imperfections of a manufacturing procedure, for example. We quantify the
uncertainties using a stochastic modeling, where the deterministic parameters are substituted by random variables.

The solution of the stochastic models can be computed numerically by sampling methods like (quasi) Monte
Carlo simulations, for example. Therein, the dynamical system has to be solved many times. Alternatively, we con-
sider numerical techniques based on the polynomial chaos expansion of the unknown random processes, see [1–3].
A stochastic Galerkin (SG) method yields a larger coupled system, which has to be solved just once to obtain an
approximation of the random processes, see [4, 5]. This approach has already been applied successfully to systems of
ODEs and DAEs, see [6–8].

We consider linear dynamical systems with random parameters, where the dimension of the state space is already
large due to the original modeling. Thus a model order reduction (MOR) is advantageous to decrease the complexity
of the problem. Appropriate MOR methods are available for linear dynamical systems, see [9–11]. Moreover, pa-
rameterized model order reduction (pMOR) has been developed to preserve deterministic parameters as independent
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variables in the reduced order models, see [12–15]. In case of large numbers of random parameters, a reduction of
the random space based on a sensitivity analysis is discussed in [16]. Furthermore, reduced basis methods have been
investigated for partial differential equations with stochastic influences in [17, 18], for example.

In this paper, we apply MOR in connection to the SG method to solve the stochastic models. The reduction of
the coupled system resulting from the SG approach is investigated. This strategy has already been used in [19, 20]
for Gaussian random variables. We reduce the original dynamical systems and apply the SG method afterward. In the
second approach, more variants are feasible. We discuss both traditional MOR and pMOR for this purpose. A focus
is on reduction using moment matching by the Arnoldi algorithm, see [21], which turns out to be advantageous due to
a preservation of smoothness. A brief error analysis is given. We compare the two strategies with respect to accuracy
and computational effort.

2. DYNAMICAL SYSTEMS WITH RANDOM PARAMETERS

In this section, we define the problems to be considered in the stochastic methods and the model order reduction.

2.1 Linear Dynamical Systems

We consider linear dynamical systems of the form

C(p)ẋ(t, p) + G(p)x(t, p) = Bu(t)

y(t, p) = Lx(t, p)
(1)

in a time intervalt ∈ [t0, t1] with input signalsu : [t0, t1] → RNin from some class. The square matricesC(p), G(p) ∈
RN×N typically include physical parametersp ∈ Π in some relevant subsetΠ ⊆ RQ. Consequently, the unknown
state variablesx : [t0, t1] × Π → RN depend on time as well as the parameters. Furthermore, output variables
y : [t0, t1] × Π → RNout are defined as quantities of interest. The matricesB ∈ RN×Nin andL ∈ RNout×N are
associated to the input and the output, respectively, and often do not depend on physical parameters. Thus we assume
thatB andL are constant. Nevertheless, generalizations to parameter-dependent matrices are straightforward.

In mathematical models of technical applications, and assuming appropriate definitions of the parameters, the
entries of the matricesC(p), G(p) in (1) are often polynomials or even affine-linear functions in the variablesp. For
example, modified nodal analysis [22] for linear electric circuits yields systems (1), where the matrices are affine-
linear functions of capacitances, inductances and conductances. In [7, 23], parameter-dependent matrices likeC(p)
are assumed to be of the form

C(p) = C0 + η1(p1)C1 + · · ·+ ηQ(pQ)CQ, (2)

(and similarly forG(p)) with linear or nonlinear scalar functionsηj and examples are given.
We assume eitherdet(C(p)) 6= 0 for all p ∈ Π or det(C(p)) = 0 for all p ∈ Π. Thus the system (1) represents

either ordinary differential equations (ODEs) or differential algebraic equations (DAEs) only. In the latter case, we
suppose a regular matrix pencil, i.e., it holds for eachp ∈ Π thatdet(G(p) + λC(p)) 6= 0 for all λ ∈ C\T (p) with
some finite setT (p) ⊂ C. We omit the mixed case of regular and singular matricesC(p) for simplicity, since it hardly
appears in practice. Nevertheless, most of the following results also apply to the mixed case.

Let U(s), X(s, p), Y (s, p) be the Laplace transforms of the above time-dependent functions with the same di-
mensions. The input-output behavior of the dynamical system (1) is specified by a transfer function in the frequency
domain, see [9]. Due to the dependence on the parameters, the transfer function reads as

H(s, p) = L(G(p) + sC(p))−1B (3)

with the variables ∈ C\T (p). The transfer function is matrix-valued, since it holds thatH(s, p) ∈ CNout×Nin . An
exception are single-input-single-output (SISO) systems, which implyNout = Nin = 1. The input-output relation is
given byY (s, p) = H(s, p)U(s) in any case.
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2.2 Stochastic Modeling

Now we assume that the chosen parameters exhibit some uncertainties. Following a common approach in uncertainty
quantification, we substitute the parameters by independent random variables

p : Ω → Π, ω 7→ p(ω) = (p1(ω), . . . , pQ(ω))>

on some probability space(Ω,A, P ) with event spaceΩ, sigma-algebraA, and probability measureP . We as-
sume continuous random variables in the following, for example, uniformly distributed, Gaussian-distributed or beta-
distributed functions. Generalizations to discrete random variables are feasible, cf. [5, Ch. 3.1]. Using continuous
random variables, a probability density functionρ : Π → R is available. Consequently, the state variables and outputs
satisfying (1) become time-dependent random processes. We are interested in statistics (expected value, variance, etc.)
or more sophisticated stochastic quantities of the outputs.

Given a measurable functionf : Π → K with K = R orK = C, we introduce the abbreviation

E [f(p)] :=
∫

Ω

f(p(ω)) dP (ω) =
∫

Π

f(p)ρ(p) dp (4)

for the expected value, provided that it exists. The expected value (4) implies an inner product for the Hilbert space
L2(Π, ρ) := {f : Π → K |E[|f |2] < ∞}. Givenf, g ∈ L2(Π, ρ), this inner product is just

〈f(p), g(p)〉 := E
[
f(p)g(p)

]
for K = R and 〈f(p), g(p)〉 := E

[
f(p)g(p)

]
for K = C.

We apply this notation also to vector-valued as well as matrix-valued functionsf(p) ∈ KM×N and scalar func-
tions g(p) ∈ K, where〈f(p), g(p)〉 ∈ KM×N is defined componentwise by〈fij(p), g(p)〉. Furthermore, the inner
product defines a norm‖ · ‖L2 onL2(Π, ρ).

2.3 Polynomial Chaos Expansion

Each probability distribution yields an associated orthonormal system of polynomials(Φi)i∈N provided that all poly-
nomials belong toL2(Π, ρ), see [1]. Thus it holds that〈Φi(p), Φj(p)〉 = δij with the Kronecker deltaδij . Further-
more, letΦ0 ≡ 1 be the constant polynomial. We assume that the orthonormal polynomials are dense inL2(Π, ρ).
This property is fulfilled by probability distributions of uniform, Gaussian or beta type, for example. General distribu-
tions have to satisfy certain conditions, see [24], whereas a treatment of lognormal distributions can be found in [25].
Consequently, a functionf ∈ L2(Π, ρ) exhibits a representation in the so-called polynomial chaos (PC), see [5],

f(p) =
∞∑

i=0

fiΦi(p), (5)

in which the coefficientsfi ∈ K are given by the projectionfi = 〈f(p),Φi(p)〉. The expansion (5) converges in
the norm ofL2(Π, ρ). The rate of convergence depends on the smoothness off with respect to the parameters. The
expected value is justE[f ] = f0. ForK = R, the variance follows from an infinite sum:Var(f) = f2

1 + f2
2 + · · · .

Assuming functions inL2(Π, ρ), we apply the PC expansion (5) to the state variables, the output variables, and the
transfer function of the dynamical system (1). Therein, the representation exists pointwise for each timet ∈ [t0, t1] or
each frequencys ∈ C.

To compute an approximation of the random processesx or y solving (1), a PC expansion (5) is truncated after
the firstM terms. Typically, all basis polynomialsΦ0, . . . , ΦM−1 up to some degreeD are chosen. It holds that
M = (Q + D)!/Q!D!.

The rate of convergence of the expansion (5) depends on the smoothness of the functionf with respect to the
parametersp, see [5, Thm. 3.6], for example. Given ak-times weakly differentiable function on a compact domainΠ,
the truncation error is proportional toD−k.
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There are mainly two types of numerical methods to compute the unknown coefficient functions: stochastic col-
location techniques and the stochastic Galerkin (SG) method, see [2, 4, 5]. We consider only the SG approach in this
paper, since its properties are advantageous in the case of linear dynamical systems, see [26]. However, we admit that
in several cases the stochastic collocation method combines providing good results with flexibility in allowing the use
of different simulation tools.

2.4 Stochastic Galerkin Method

We outline the well-known SG technique for the dynamical system (1) including random parameters. The PC expan-
sion of the state variables as well as the output variables are truncated at someM ≥ 1, i.e., we obtain

x(M)(t, p) =
M−1∑

i=0

vi(t)Φi(p), y(M)(t, p) =
M−1∑

i=0

wi(t)Φi(p). (6)

It holds thatwi(t) = Lvi(t) for the original coefficients only, i.e., the equality is violated if the exact coefficients are
replaced by approximations. Inserting the finite sums (6) into the linear dynamical system (1) yields the residuals

δx(t, p) := C(p)ẋ(M)(t, p) + G(p)x(M)(t, p)−Bu(t),

δy(t, p) := y(M)(t, p)− Lx(M)(t, p).

We want to determine the unknown coefficients such that the residuals become small in some sense. The Galerkin
method implies that the residuals are orthogonal with respect to the applied space of basis polynomials, i.e.,

〈δx(t, p), Φl(p)〉 = 0, 〈δy(t, p), Φl(p)〉 = 0 for l = 0, 1, . . . , M − 1

and eacht ∈ [t0, t1].
Since every involved function is assumed to be continuous in time, it is reasonable to consider allt ∈ [t0, t1]. We

obtain the larger coupled system
Ĉv̇(t) + Ĝv(t) = B̂u(t)

w(t) = L̂v(t)
(7)

with v := (v0, v1, . . . , vM−1)> ∈ RMN andw := (w0, w1, . . . , wM−1)> ∈ RMNout . The resulting matriceŝC, Ĝ ∈
RMN×MN consist of the following minors

Ĉ = (Ĉij)i,j=0,...,M−1, Ĉij := 〈C(p)Φi(p), Φj(p)〉,
Ĝ = (Ĝij)i,j=0,...,M−1, Ĝij := 〈G(p)Φi(p), Φj(p)〉. (8)

The matriceŝB ∈ RMN×Nin andL̂ ∈ RMNout×MN areB̂ = (1, 0, . . . , 0)>⊗B andL̂ = IM⊗L with the Kronecker
product and the identity matrixIM , since their entries do not depend on the parameters. The coupled system (7) has
to be solved just once to achieve an approximation of the random processes.

Assuming a decomposition (2), in which the required scalar functions are polynomials, we can calculate the
entries (8) of the matriceŝC, Ĝ in (7) analytically for traditional probability distributions. In any case, we can use a
quadrature for the probabilistic integrals in (8) to compute the entries ofĈ, Ĝ sufficiently accurate a priori, while the
computational effort is often negligible in comparison to the time integration or a reduction of the coupled system (7).

The coupled system (7) also exhibits an input-output behavior, which is specified by the transfer function

Ĥ(s) := L̂(Ĝ + sĈ)−1B̂. (9)

It follows that the entries of̂H(s) ∈ CMNout×Nin include approximations of the PC coefficients for the original
transfer function (3), see [16].
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2.5 Model Order Reduction

We now assume that the dynamical system (1) has a huge dimensionalityN . The following statements also hold for
deterministic parameters. Let first a fixed realizationp ∈ Π of the parameters be given. Several approaches exist to
reduce the complexity of such systems like moment matching, Krylov-space methods, balanced truncation, SVD-type
methods, proper orthogonal decomposition, see [9]. It follows that the system (1) is reduced to a system

Cr(p)ẋr(t, p) + Gr(p)xr(t, p) = Br(p)u(t)

yr(t, p) = Lr(p)xr(t, p)
(10)

of state space dimensionNred ¿ N .
Yet good approximationsyr ≈ y are desired, which is conditional to the proper choice of the matrices in the

reduced system. The transfer function of the reduced order model (10) reads as

Hr(s, p) := Lr(Gr(p) + sCr(p))−1Br (11)

with same sizeCNout×Nin asH in (3). Often the MOR approach yields projection matricesW (p), V (p) ∈ CN×Nred

satisfying the orthogonality conditionWH(p)V (p) = INred such that

Cr(p) = W (p)HC(p)V (p), Gr(p) = W (p)HG(p)V (p),
Br(p) = W (p)HB, Lr(p) = LV (p).

(12)

Note that the matricesBr andLr depend on the parameters now due to the projection matrices.
We consider moment matching for MOR, based on Krylov-spaces. The accuracy of these techniques focuses on

the imaginary axis in the frequency domain, see [27–29]. For simplicity, we will restrict ourselves in choosing a
suitable expansion points0 = iω0 with ω0 ∈ R (a point for which the matrix pencil is nonsingular). We note that
interpolation (expansion) points for rational interpolation methods (moment matching methods) are often chosen off
the imaginary axis. For example, a real expansion point implies that all computations are real. With complex expansion
points one can tune the accuracy. When optimal interpolation points are sought, they are usually somewhere in the
complex plane, cf. [27, 28]. Of course, in the end, one must take care that a real problem is approximated by a real
reduced model. A detailed discussion can be found in [27, Section 7].

Optimal expansion points reduce the number of moments that have to be matched. By this, the reduced models
may be more sparse than by those derived with fixed expansion points. However, optimal expansion points are often
parameter-dependent. We assume expansion points that are fixed for all parameters under study. This property can be
easily generalized to the case that the set of expansion points over all parameters is finite.

Choosing an expansion points0 = iω0 with ω0 ∈ R, the reduced order model (10) is constructed such that
the transfer functionHr becomes a Padé approximant ofH with identical moments ins0 up to some order. We will
use the Arnoldi process to calculate the projection matrices, which impliesW (p) = V (p). Generalizations to several
expansion points also exist. For more details, we refer to [9, 21, 27]. This strategy is also applicable to the coupled
system (7) in the same manner.

Alternatively, techniques of parameterized model order reduction (pMOR) preserve the parameters as indepen-
dent variables in reduced systems, see [12, 14, 15, 30]. Often constant projection matricesW0, V0 ∈ CN×Nred are
determined a priori using the information from many samples of the parameters, cf. [35], for example. The matrices
of the reduced order model (10) become

Cr(p) = WH
0 C(p)V0, Gr(p) = WH

0 G(p)V0,

Br = WH
0 B, Lr = LV0.

(13)

An advantage is that an explicit formula is available forCr(p), Gr(p) and arbitraryp ∈ Π. The evaluation of this
formula becomes cheap if the number of parameter-dependent entries is much smaller than the number of constant
entries in the matricesC(p), G(p), which allows for projecting the parameter-independent part a priori in the offline
phase of the MOR. Furthermore, the matricesBr, Lr are independent of the parameters.
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3. REDUCTION OF THE STOCHASTIC MODEL

In this section, we investigate two approaches that are illustrated in Table 1. In Section 3.1, we first apply the SG
method to the random dynamical system and next use MOR methods (first ”right,” then ”down”). In Section 3.2, we
first employ a (parameterized) MOR method and next apply the SG method (first ”down,” then ”right”).

3.1 MOR for the SG System

The SG method changes the random dynamical system (1) into the coupled system (7). If the sizeN of the orig-
inal system is already large, then the coupled system exhibits the even higher dimensionMN . Hence the coupled
system (7) is an excellent candidate for MOR. Moreover, a high potential for reduction appears, because sparse repre-
sentations are often observed in a PC expansion, see [31, 32]. If the numberM refers to all polynomials up to a fixed
degree, then a sparse representation implies that a smaller number of basis functions would also yield an approxima-
tion of the same quality. Ordinary MOR schemes for the coupled system (7) are able to decrease the dimensionality
without knowing the significant basis polynomials. In particular, a potential for MOR is given even if the original
system (1) does not allow for an efficient reduction. Note that there is no need for pMOR schemes in this procedure,
since the parameters do not appear explicitly in the coupled system (7) due to the probabilistic integration in (8).

MOR of the coupled system (7) yields a linear dynamical system of smaller size

Ĉrv̇r(t) + Ĝrvr(t) = B̂ru(t)

wr(t) = L̂rvr(t).
(14)

This strategy was already applied in [19, 20] for random variables with Gaussian distributions. In [16], this reduction
has been employed for uniformly distributed parameters.

We consider moment matching for a reduction of the system (7), where the Arnoldi algorithm is applied, see [21].
We suppose that all resulting linear systems of algebraic equations are solved directly by anLU -decomposition.
Assuming a single expansion points0 ∈ C, this procedure requires just one decomposition of the matrixĜ + s0Ĉ,
cf. (9). However, if the dimensionMN is huge, then this decomposition represents a bottleneck in the complete
strategy.

3.1.1 Convergence Properties

To analyze the performance of this approach, we investigate the relations between the transfer functions of the sys-
tems (1) and (7). For simplicity, we consider SISO systems, since generalizations to multiple-input-multiple-output
are straightforward. A result on the Laplace transform is required.

TABLE 1: Flow chart

C(p)ẋ + G(p)x = Bu
y = Lx

Y (s, p) = H(s, p)U(s)

SG−−−−−−→
Ĉv̇ + Ĝv = B̂u

w = L̂v

W (s) = Ĥ(s)U(s)

(p)MOR

y MOR

y

Cr(p)ẋr + Gr(p)xr = Br(p)u
yr = Lr(p)xr

Yr(s, p) = Hr(s, p)U(s)

SG−−−−−−→
Ĉrv̇r + Ĝrvr = B̂ru

wr = L̂rvr

Wr(s) = Ĥr(s)U(s)
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Lemma 1 (Laplace transform). Let y(t, p) and a sequencey(M)(t, p) for the integersM ≥ 1 be given, where all
functions are inL2(Π, ρ) for eacht ≥ 0. In addition, the Laplace transforms of the time variable for all those
functions and eachp ∈ Π are assumed to exist for alls ∈ C satisfyingRe(s) > α with a constantα ∈ R independent
of M andp. If the convergence

lim
M→∞

∥∥∥y(M)(t, ·)− y(t, ·)
∥∥∥

L2
= 0 for each t ≥ 0 (15)

is valid and dominated by a functionz ∈ L1([0,∞)), i.e.,

0 ≤
∥∥∥y(M)(t, ·)− y(t, ·)

∥∥∥
L2
≤ z(t) for all t ≥ 0 and all M ≥ 1,

then the associated Laplace transforms inherit the convergence

lim
M→∞

∥∥∥Y (M)(s, ·)− Y (s, ·)
∥∥∥

L2
= 0 for each s ∈ C with Re(s) > max{α, 0}. (16)

Proof. We write

∥∥∥Y (M)(s, ·)− Y (s, ·)
∥∥∥

2

L2

=
∫

Π

∣∣∣∣
∫ ∞

0

e−sty(M)(t, p) dt−
∫ ∞

0

e−sty(t, p) dt

∣∣∣∣
2

ρ(p) dp

≤
∫

Π

[∫ ∞

0

∣∣∣e−st(y(M)(t, p)− y(t, p))
∣∣∣ dt

]2

ρ(p) dp

=
∫

Π

[∫ ∞

0

∫ ∞

0

∣∣∣e−sve−su(y(M)(v, p)− y(v, p))(y(M)(u, p)− y(u, p))
∣∣∣ dudv

]
ρ(p) dp (17)

for eachs ∈ Cwith Re(s) > α, while the existence of this upper estimate is not guaranteed yet. The Cauchy-Schwarz
inequality yields

∫ ∞

0

∫ ∞

0

[∫

Π

∣∣∣e−sve−su(y(M)(v, p)− y(v, p))(y(M)(u, p)− y(u, p))
∣∣∣ ρ(p) dp

]
dudv (18)

=
∫ ∞

0

∫ ∞

0

∣∣e−sve−su
∣∣ ·

〈∣∣∣y(M)(v, p)− y(v, p)
∣∣∣ ,

∣∣∣y(M)(u, p)− y(u, p)
∣∣∣
〉

dudv

≤
∫ ∞

0

∫ ∞

0

∣∣e−sv
∣∣ · ∣∣e−su

∣∣ ·
∥∥∥y(M)(v, ·)− y(v, ·)

∥∥∥
L2
·
∥∥∥y(M)(u, ·)− y(u, ·)

∥∥∥
L2

dudv

≤
[∫ ∞

0

∥∥∥y(M)(t, ·)− y(t, ·)
∥∥∥

L2
dt

]2

,

for eachs ∈ C with Re(s) > max{α, 0}. The final integral in time exists due to the assumption of the dominating
functionz. The existence of the upper bound also shows that the integrals (18) exist. Hence the integral (18) is equal
to the integral (17) for eachM by the theorem of Fubini. It follows that

∥∥∥Y (M)(s, ·)− Y (s, ·)
∥∥∥

L2
≤

∫ ∞

0

∥∥∥y(M)(t, ·)− y(t, ·)
∥∥∥

L2
dt, for all M ≥ 1

and eachs ∈ C with Re(s) > max{α, 0}. For increasingM , the integrand of the upper bound converges point-wise
to zero for eacht ≥ 0 due to (15). We obtain the convergence (16) by the theorem of dominated convergence.
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We continue by showing that the transfer function of the coupled system converges to the original transfer function
of the random dynamical system provided that the SG method converges in time domain.

Theorem 1(Convergence of transfer function). Let the stochastic Galerkin method be convergent in the time domain,
i.e., the sequencey(M)(t, p) of outputs satisfies (15). Under the additional assumptions of Lemma 1, it follows that

lim
M→∞

∥∥∥∥∥H(s, ·)−
M−1∑

i=0

Ĥi(s)Φi(·)
∥∥∥∥∥

L2

= 0 for each s ∈ C with Re(s) > max{α, 0}, (19)

whereH(s, p) is the transfer function of the dynamical system (1) andĤi(s) are the values from (9) belonging to the
coupled system (7).

Proof. Let wi(t) for i = 0, 1, . . . , M − 1 be the components of the output of the coupled system (7), which means
that they are not identical to the exact PC coefficients. LetWi(s) be the Laplace transform ofwi(t) for eachi. The
approximationy(M)(t, p) is reconstructed fromw0(t), . . . , wM−1(t). Its Laplace transform can be written as

Y (M)(s, p) =
M−1∑

i=0

Wi(s)Φi(p)

due to the linearity of the Laplace transformation. The convergence (15) implies the convergence (16) of the associated
Laplace transforms by Lemma 1. Given an arbitrary inputu and its Laplace transformU , we obtain

∥∥∥Y (s, ·)− Y (M)(s, ·)
∥∥∥

2

L2
=

∥∥∥∥∥H(s, ·)U(s)−
M−1∑

i=0

Ĥi(s)U(s)Φi(·)
∥∥∥∥∥

2

L2

= |U(s)|2 ·
∥∥∥∥∥H(s, ·)−

M−1∑

i=0

Ĥi(s)Φi(·)
∥∥∥∥∥

2

L2

for eachs ∈ C where the Laplace transform exists. For each fixeds0, we choose the inputu(t) := e(−1+s0)t, which
results inU(s0) = 1. Hence the convergence (19) follows pointwise fors.

3.1.2 Error analysis

We analyze the approximation error for the transfer function. Let‖ · ‖L2 be the norm of the Hilbert spaceL2(Π, ρ) for
complex-valued functions. We denote the components of the transfer function for the reduced system (14) by(Ĥr)i.
It follows that

∥∥∥∥∥H(s, ·)−
M−1∑

i=0

(Ĥr)i(s)Φi(·)
∥∥∥∥∥

L2

≤
∥∥∥∥∥H(s, ·)−

M−1∑

i=0

Ĥi(s)Φi(·)
∥∥∥∥∥

L2

+

∥∥∥∥∥
M−1∑

i=0

[
Ĥi(s)− (Ĥr)i(s)

]
Φi(·)

∥∥∥∥∥
L2

=: E1(s) + E2(s).

(20)

The termE1 in (20) converges to zero in view of Theorem 1. The termE2 in (20) can be estimated by

E2(s) ≤
M−1∑

i=0

∣∣∣Ĥi(s)− (Ĥr)i(s)
∣∣∣ =

∥∥∥Ĥ(s)− Ĥr(s)
∥∥∥

1

with the vector norm‖ · ‖1 in CM , since each basis polynomial has anL2-norm of one. The magnitude of the error
termE2 depends on the MOR scheme applied to the coupled system (7).
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3.2 MOR for Original Parameterized System

Now we reduce the dynamical system (1) at first and use the SG method afterward. The strategy from Section 3.1
is straightforward except for the choice of the MOR scheme. In contrast, the alternative strategy of this subsection
allows for several variants with respect to the discretization of probabilistic integrals in the SG technique. Moreover,
the feasibility of each approach has to be examined carefully.

We assume that a method of MOR yields the matrices in the reduced system (10) of dimensionNred for an
arbitraryp ∈ Π. A direct application of the SG method to the system (10) results in the following formulas for the
minors of the matrices:

Ĉr ∈ CMNred×MNred : (Ĉr)ij := 〈Cr(p)Φi(p),Φj(p)〉,
Ĝr ∈ CMNred×MNred : (Ĝr)ij := 〈Gr(p)Φi(p), Φj(p)〉,
B̂r ∈ CMNred×Nin : (B̂r)i := 〈Br(p), Φi(p)〉,
L̂r ∈ CMNout×MNred : (L̂r)ij := 〈Lr(p)Φi(p),Φj(p)〉.

(21)

The matrices are real-valued or complex-valued conditioned by the MOR scheme.
In (21), we assume the existence of the probabilistic integrals. If the matrices of the reduced order model are

continuous inp and the spaceΠ is compact, then this existence is guaranteed. We discuss two variants in the further
proceeding.

3.2.1 Matrix Sampling

The probabilistic integrals in (21) are approximated by a quadrature formula or a sampling scheme. The approximation
with respect toĈr reads as

〈Cr(p)Φi(p),Φj(p)〉 .=
K∑

k=1

γkCr(p(k))Φi(p(k))Φj(p(k))

with nodesp(1), . . . , p(K) ∈ Π and weightsγ1, . . . , γK ∈ R. Likewise, the identical quadrature is used for the
other matrices. Hence the computational work consists ofK reductions of the system (1). It is natural to apply the
same MOR approach pointwise for each nodep(k) to determine the reduced matrices. Using moment matching, the
dimension of the Krylov-spaces may depend onp. However, an identical reduced dimensionNred is assumed for all
nodes in our approach.

For the existence of the probabilistic integrals in (21), we assume that the reduced matrices are at least continuous
with respect to the dependence on the parameters, cf. [12]. Note that there may be some MOR approaches, where
this property is violated. Nevertheless, the smoothness of the matrices with respect to parameters is preserved by the
Arnoldi procedure.

Lemma 2(Matrices from Arnoldi algorithm). In the moment matching technique, let the same expansion points0 ∈ C
be chosen such thatG(p) + s0C(p) is regular for allp ∈ Π. Assume that the dimensions of the Krylov-spaces are at
leastNred for all p ∈ Π. If the matricesC(p), G(p) are`-times continuously differentiable on the parameter spaceΠ,
then the Arnoldi algorithm yields a projection matrixV (p) ∈ RN×Nred that is `-times continuously differentiable
again.

Proof. Without loss of generality, we assume a single input (B ∈ RN\{0}). Using F (p) := G(p) + s0C(p), it
holds thatF, F−1 ∈ C` due toC,G ∈ C`. The moment matching can be done employing the Krylov-subspaces
Km(A(p), b(p)) with A(p) := F (p)−1C(p) andb(p) := −F (p)−1B, see [21, Section 3]. Letm = Nred. It holds that
b(p) 6= 0 due toB 6= 0. In addition, we obtainA, b ∈ C`.

We apply the Arnoldi algorithm from [9, p. 335]. The initialization reads as

v1 :=
b(p)
‖b(p)‖ , w(p) := A(p)v1(p), α(p) := v1(p)Hw(p), r1(p) := w(p)− α(p)v1(p), V1(p) := (v1(p)).
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Obviously, all operations are differentiable and thus preserve the smoothness. Forj = 1, . . . , m − 1, the algorithm
proceeds by

vj+1(p) :=
rj(p)
‖rj(p)‖ , Vj+1(p) := (Vj(p) vj+1(p)) , w(p) := A(p)vj+1(p),

h(p) := Vj+1(p)Hw(p), rj+1(p) := w(p)− Vj+1(p)h(p).

Again all operations yield smooth functions. The assumption on the dimension of the Krylov-subspaces guarantees
the propertyrj(p) 6= 0 for j = 1, . . . , m− 1. It follows thatV ∈ C`.

Note that the compactness of the parameter spaceΠ is sufficient for the existence of expansion points (also on the
imaginary axis) satisfying our assumption in case of a regular matrix pencil for allp. In practical computations, the
Arnoldi algorithm should be terminated if tiny vectorsrj(p) occur in view of numerical stability. Therefore, one has
to assume that these vectors are sufficiently large up to orderNred for all p ∈ Π.

Now Lemma 2 implies that the reduced matricesCr(p), Gr(p), Br(p), Lr(p) in (12) inherit the smoothness. The
information from Lemma 2 is valuable, since it allows for conclusions on the convergence of the SG method in
case of ODEs (1). IfC(p), G(p) ∈ C`, then the solution satisfiesx, y ∈ C` with respect to the parameters. The
speed of convergence of the PC expansion depends on the smoothness of the random processes. Now the Arnoldi
algorithm implies a reduced system (10). We assume thatCr(p) is regular, which is obvious in case of symmetric
positive definite matricesC(p), for example. Hence the solution fulfillsxr, yr ∈ C` again. Although the SG method is
convergent for just continuous reduced matrices, the rate of convergence of the SG is preserved due to the smoothness.
In case of DAEs (1), the analysis of the dependence on parameters is more difficult and the index of the system has to
be considered, cf. [33].

3.2.2 Parameterized MOR approach

Now we employ a pMOR as outlined in Section 2.5. Given constant projection matricesW0, V0 ∈ CN×Nred , we
arrange the reduced matrices (13). The computation of the reduced matrices (21) in the SG method can be done
exactly now. We obtain

〈Cr(p)Φi(p),Φj(p)〉 = 〈W0C(p)V0Φi(p), Φj(p)〉 = W0〈C(p)Φi(p), Φj(p)〉V0 = W0ĈijV0

and, likewise, for the other matrices. Since the projection matrices are constant, the existence of the probabilistic
integrals follows directly from the continuity of the matricesC(p), G(p).

We recognize the minors (8) of the matrix of the coupled system (7) in the above formula. Thus the reduced
matrices can be written as

Ĉr = (IM ⊗W0)HĈ(IM ⊗ V0), Ĝr = (IM ⊗W0)HĜ(IM ⊗ V0),

B̂r = (IM ⊗W0)HB̂, L̂r = L̂(IM ⊗ V0)
(22)

using Kronecker products and the identity matrixIM . Hence the construction (22) represents a special case of MOR
for the coupled system (7), cf. Section 3.1. The crucial advantage is that anLU -decomposition of a matrix of sizeMN
is omitted in this variant.

We consider two techniques to construct the projection matrices, which will be used for numerical simulations in
Section 4. Therein, we arrangeW0 = V0.

a) A trivial pMOR is obtained by usingV0 := V (p) with some reference realizationp ∈ Π of the parameters like
the expected valuep := E[p], for example. The computational effort consists of just a single application of a
scheme for MOR. However, we do not expect a high accuracy in this variant unless the projection matrixV (p)
is nearly constant with respect to the parameters. We refer to [13, 34] for a good example of a projection
matrixV (p) that strongly varies with respect top.
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b) A more sophisticated approach uses samplesp(1), . . . , p(K) ∈ Π, where the reduction is applied pointwise.
A grid of a quadrature rule can also be used to obtain this discrete set of parameters, although the quadrature
weights usually do not appear in the technique. It is allowed that the reduced dimension is different for each
grid point now. For brevity, we assume the same dimension in each system. We arrange the projection matrices
in a larger matrix

Ṽ :=
(
V (p(1)) · · ·V (p(K))

)
∈ CN×KNred , (23)

in which each individualV (p(j)) is a nonsquare matrix with orthonormal columns. In [35], the pMOR was per-
formed by the global matrixV0 := Ṽ obtained by explicit moment matching after expanding in all components
of p. A stable implicit moment matching algorithm is provided in [13]. A recycling Krylov-space approach is
considered in [15]. Using all these algorithms, one may stop a particular extension of the subspace built so far
when the new vector orthogonal to it has a sufficiently small norm.

Also we consider an additional reduction, since the dimensionKNred of (23) may be large. We follow an
approach used in [12, 36], where a global basis was constructed from several local bases. A singular value
decomposition (SVD) yields the factorizatioñV = UDTH with unitary matricesU, T and a diagonal matrixD
including the singular values. The span of the column vectors satisfiesspan(Ṽ ) = span(UD). Choosing an
integerR < KNred, we collect theR columns ofU , which correspond to the largest singular values, into a
global projection matrixV0 ∈ CN×R. Thus we obtain the dominant directions inV0.

By enlarging the spaces, in separating real parts and imaginary parts of basis vectors, real projection matrices can be
derived if desired, cf. [13].

3.2.3 Error Analysis

We discuss shortly the error of the techniques from Section 3.2.1 and Section 3.2.2. Similar to (20), it follows that
∥∥∥∥∥H(s, ·)−

M−1∑

i=0

(Ĥr)i(s)Φi(·)
∥∥∥∥∥

L2

≤
∥∥∥∥H(s, ·)−Hr(s, ·)

∥∥∥∥
L2

+

∥∥∥∥∥Hr(s, ·)−
M−1∑

i=0

(Ĥr)i(s)Φi(·)
∥∥∥∥∥

L2

=: E3(s) + E4(s).

(24)

The quality of the MOR determines the magnitude of the termE3(s) in (24). Since theL2-norm of the probability
space is employed, the MOR is required to be sufficiently accurate in subdomains of the parameters with relatively
large probabilities. The termE4(s) in (24) depends on the convergence of the SG method. Using the Arnoldi proce-
dure, the SG approach is convergent for systems of ODEs (1), due to Lemma 2. Theorem 1 implies thatE4(s) tends
to zero.

3.3 Comparison

Finally, Table 2 summarizes the properties of the two approaches. The first strategy indicates a higher accuracy, while
a large computational effort appears for large numbers of basis polynomials. Vice versa, the second strategy offers a
lower computational time, whereas the accuracy is reduced by further errors.

In both approaches, the PC expansions (5) are truncated afterM terms. The examinations of this section imply
results on the convergence properties forM → ∞. In practice, the degree of the truncation should be chosen such
that the output of the system (1) is approximated sufficiently accurate. In many applications, increasing the variance
of the input random parameters requires to select a higher polynomial degree, i.e., a largerM is needed.

4. TEST EXAMPLES

We present results for the simulation of two illustrative examples in this section.
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TABLE 2: Comparison of the two approaches in Section 3.1 and Section 3.2
MOR after SG SG after MOR

often high potential for reduction of the coupled sys-
tem

potential for reduction depends only on the parame-
terized system

matricesĜ, Ĉ often computable without errors matricesĜr, Ĉr include some discretization error

arbitrary choice of reduced dimension system has to be reduced to the same dimension for
each parameter in matrix sampling

LU -decomposition of higher dimensionMN LU -decompositions of dimensionN

potential for parallelism mostly just inLU -de-
composition

potential for parallelism by MOR for different param-
eters

4.1 Anemometer

The anemometer represents a benchmark in the MOR Wiki [37]. A fluid is heated up, where a flow field causes an
asymmetric heat distribution. Consequently, a temperature difference appears between two thermal sensors, which
allows for a measurement of the fluid velocity. Figure 1 illustrates the layout of the anemometer.

This application is modeled by a convection-diffusion equation

ρc
∂T

∂t
= ∇ · (κ∇T )− ρc~v · ∇T + q̇ (25)

for the unknown temperatureT in two space dimensions. The heat flowq̇ represents the input, whereas the temperature
difference of the sensors yields the output. A velocity profile~v is predetermined. The involved physical parameters
are the densityρ, the scalar fluid velocityv (as a part of~v), the specific heatc, and the thermal conductivityκ. We
assume a constant densityρ = 1. Hence our parameters read asp = (v, c,κ)>. A finite element discretization of
the partial differential equation (25) produces an implicit system of ODEs with dimensionN = 29,008. This SISO
system exhibits the following dependence on the parameters

C(c)ẋ(t, p) + G(v, c, κ)x(t, p) = Bu(t),
y(t, p) = Lx(t, p).

The regular matrixC is diagonal, whereas the matrixG is sparse but asymmetric. The entries ofC are affine functions
of c and the entries ofG represent polynomials up to degree two in the parameters.L selects the temperature difference
between the two sensors. These matrices are directly obtained from [37]. More details on this example can be found
in [38].

silicon

flow
field

heater

sensor no. 1 sensor no. 2

FIG. 1: Layout of the anemometer.
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We replace the parametersp = (v, c, κ)> by independent uniformly distributed random variables with 5% vari-
ation around the mean valuesv = 1, c = 1/2, κ = 3/2. In the PC expansion, we use all multivariate Legendre
polynomials up to degree two, i.e.,M = 10 basis functions appear. Thus the coupled system (7) owns the dimension
MN = 290,080.

In each reduced order model, we consider moment matching at the expansion points0 = iω0 with ω0 = 1
and apply the Arnoldi algorithm. The coupled system (7) is reduced to dimension 500. Each original system (1) is
decreased to sizeNred = 100. In the matrix sampling from Section 3.2.1, we apply a three-dimensional Gauss-
Legendre quadrature with27 nodes. In the pMOR approach from Section 3.2.2, the expected value forp is chosen to
provide a reference realization. For the SVD variant, we apply the grid of the Gaussian quadrature again and choose
the dimensionR = 150.

In each approach, we obtain approximations for the coefficients of the PC expansion of the transfer function. For
a rough comparison of the accuracy in each method, the expected value and the standard deviation of the transfer
function are reconstructed by the coefficients separately for real part and imaginary part. As a reference solution,
these statistics of the transfer function are evaluated without reduction using a three-dimensional Gauss-Legendre
quadrature with125 nodes.

The transfer function is nearly constant outside some sufficiently large frequency interval, because it represents a
rational function with a degree of the denominator larger or equal than the degree of the numerator. As error estimate,
the maximum

max
ω∈[ω1,ω2]

∣∣∣E
[
Re(H̃(iω, p))

]
− E

[
Re(H(iω, p))

]∣∣∣ (26)

is employed withH̃ being the approximation ofH. Likewise, the real part is replaced by the imaginary part and the
expected value in (26) is changed into the standard deviation.

We consider the frequency intervalω ∈ [10−2, 106]. The maxima (26) are approximated on a fine grid within this
frequency window. Table 3 shows the maximum differences of the approximations to the reference solution. Figure 2
depicts the expected value just for the reference solution, since the other methods produce almost the same result. For
the standard deviation, larger differences appear, which are illustrated by Fig. 3. Indeed, forω > 106, we recognize a

TABLE 3: Maximum differences of approximations to reference solution
in the frequency intervalω ∈ [10−2, 106] for the anemometer

Real/ex.v. Imag./ex.v. Real/st.d. Imag./st.d.
MOR after SG 2.5e-02 2.5e-02 2.45e-01 2.62e-01
Matrix sampling 2.0e-02 2.1e-02 1.6e-02 1.7e-02
pMOR (a) 3.1e-02 2.4e-02 9.25e-01 7.44e-01
pMOR (b) 5.6e-02 3.7e-02 7.10e-01 4.36e-01

real part imaginary part
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5−0.02

−0.01
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0.01

0.02
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0
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0.02
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FIG. 2: Expected value of the transfer function for the anemometer.
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FIG. 3: Standard deviation of the transfer function for the anemometer: reference solution (red), MOR after SG (blue),
matrix sampling (black), pMOR-a (green), and pMOR-b (magenta).

constant mean and a negligible variance. Also, the results by the matrix sampling approach nearly coincide with the
reference solution, except for small differences, which appear far from the expansion point. Thus the matrix sampling
is superior in this test example.

We present some more results on the pMOR method of Section 3.2.2 involving the SVD. Figure 4 shows the
computed singular values of the matrix (23) as a decreasing sequence. We observe a rapid decay of the singular values
after the firstNred = 100 numbers, which indicates a high potential for reduction. The firstR = 150 singular values
make up 99.7% of the sum of all singular values.

We have done all calculations within the software package MATLAB on a computer including an Intel Core
i5-4670 CPU, 3.40 GHz and operating system Kubuntu 14.04. The CPU times required for the above methods are
depicted in Table 4. The work for the calculation of the matrices (8) in the SG approach, which is used in all MOR
methods except for the matrix sampling, is shown separately. We present also relative computing times, where the
method pMOR (a) is defined as reference, since it is the fastest technique in this example. The MOR of the SG system
is the most expensive approach, since the work is dominated by the LU-decomposition of a huge matrix.

500 1000 1500 2000 2500

10
−10

10
0

index
0 100 200 300 400 500

10
−6

10
−4

10
−2

10
0

10
2

index

FIG. 4: Singular values of the matrix (23) appearing in pMOR for the anemometer: all values (left) and zoom (right).

TABLE 4: Computing times in methods applied to the anemometer example
MOR after SG Matrix sampling pMOR (a) pMOR (b) SG matrices

CPU times 1359 308 84 734 5
Relative times 16.2 3.7 1.0 8.7 0.06
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4.2 RLC Circuit

We apply a linear electric network from [39] shown in Fig. 5. This circuit consists of a repetition ofNcell cells and
containsNcell capacitances,Ncell − 1 inductances,Ncell conductances as well as two additional conductances at the
boundaries. A voltage source yields the input signal and the current through this source represents the output signal.
The modified nodal analysis, see [40], generates an SISO system (1) consisting of DAEs with index one. Therein, the
matricesC(p), G(p) are affine functions with respect to the physical parameters. The dimension of the state space
becomesN = 2Ncell + 1.

We chooseNcell = 10 and substitute all physical parameters by random variables except for the two boundary
conductances. ThusQ = 29 random parameters are involved, where we arrange independent uniform distributions
with variations of 10% around the mean values10−9 for capacitances,10−6 for inductances, and unity for conduc-
tances. In the PC expansion, all multivariate Legendre polynomials up to degree two are used, resulting inM = 465
basis functions. Hence the SG method produces a coupled system (7) withMN = 9,765 equations. The involved
matricesĈ, Ĝ can be calculated analytically.

In each MOR approach, the expansion points0 = iω0 with ω0 = 106 is used. The method from Section 3.1
reduces the system (7) to a system of just 40 equations. For the techniques from Section 3.2, the potential for MOR of
the system (1) is low now, since a relatively small dimension of the state space occurs. We selectNred = 10, which
implies reduced systems of sizeMNred = 4650 at the end. The Stroud quadrature of order 3, see [41], yields the
matrix sampling. For some alternative quadrature approaches, see [25]. In the formula of Stroud,K = 58 nodes are
located in the parameter space. For the first pMOR method, the expected value gives us the reference parameter again.
For the second pMOR method, we reapply the grid from the Stroud quadrature. While all systems (1) are reduced
to the dimensionNred = 10, the12 dominating directions are selected from the SVD. For comparison, we calculate
reference solutions without reduction using the Stroud quadrature of order 5, see [41], where1,683 nodes occur in the
29-dimensional parameter space.

We compare the statistics of the transfer functions for each reduction in the large frequency intervalω ∈ [1, 1015].
Figures 6 and 7 illustrate the expected values and the standard deviations, respectively. We recognize a good agreement
of all methods around the expansion point and for smaller frequencies. The matrix sampling technique produces bad
approximations for the variance at higher frequencies. We also analyze the differences for the separate complex-
valued PC coefficients of the transfer function in the smaller frequency intervalω ∈ [105, 107] around the expansion
point. The absolute values of the maximum differences are shown in Table 5, where the maximum is taken both in the
frequency domain and in each group of the coefficients with respect to the degree of the associated basis polynomials.
Now the matrix sampling features the best approximations. However, the reduced system of the matrix sampling is
much larger than the reduced system from the technique of Section 3.1. The agreement of the differences for the
pMOR approaches and the MOR after SG reflects that the pMOR can be seen as a special case of this technique due
to (22).

We also present the singular values of the second pMOR approach in Fig. 8. Since the dimension of the state space
is low, the number of singular values is equal toN now due toN < KNred. The values do not decline rapidly after
the firstNred = 10 entries, which indicates a low potential for reduction in this method. Nevertheless, the choice

Uin Iout

FIG. 5: Diagram of RLC circuit.
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FIG. 6: Expected value of the transfer function for the RLC circuit: reference solution (red), MOR after SG (blue),
matrix sampling (black), pMOR-a (green), and pMOR-b (magenta).
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FIG. 7: Standard deviation of the transfer function for the RLC circuit: reference solution (red), MOR after SG (blue),
matrix sampling (black), pMOR-a (green), and pMOR-b (magenta).

TABLE 5: Maximum differences of approximations to refer-
ence solution for the PC coefficients of the transfer function in
the frequency intervalω ∈ [105, 107] for the RLC circuit

Degree zero Degree one Degree two
MOR after SG 1.4606e-03 5.3744e-05 1.3181e-03
Matrix sampling 1.8314e-06 3.1944e-05 8.8125e-04
pMOR (a) 1.4735e-03 5.1020e-02 1.3180e-03
pMOR (b) 1.4887e-03 5.1031e-02 1.3181e-03

of R = 12 dominant directions yields much better approximations than the first pMOR variant with just a reference
parameter for frequencies up toω ≈ 1011.

Finally, we present the observed computing times in Table 6 following the structure of Table 4. The reduction of
the original systems (1) is cheap in this example. Since many basis polynomials appear, the effort for the calculation
of the SG matrices is dominating due to summations within the minors (8). Now the matrix sampling exhibits the
highest computational work, because the formation of the matrices is a part of the method, whereas the time for the
SG matrices as input is separated from the other approaches.
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FIG. 8: Singular values of the matrix (23) appearing in pMOR of RLC circuit.

TABLE 6: Computing times in methods applied to the circuit example
MOR after SG Matrix sampling pMOR (a) pMOR (b) SG matrices

CPU times 6.1 22.2 0.03 0.1 26.7
Relative times 203 740 1.0 3.3 890

5. CONCLUSIONS

We investigated MOR methods to resolve stochastic models consisting of linear dynamical systems with random pa-
rameters. The reduction of the larger dynamical system from a stochastic Galerkin method, which was already used
in the literature, has been analyzed in more detail. Moreover, we considered MOR of the original dynamical systems
followed by the stochastic Galerkin technique as a novel alternative. A respective matrix sampling approach was
shown to be feasible in case of moment matching using the Arnoldi algorithm. In addition, we examined parame-
terized MOR in this context, which enables a further variant. Numerical simulations of test examples demonstrate
that all discussed approaches produce reasonable approximations. In particular, the matrix sampling variant offers a
high accuracy, whereas the computational effort is relatively low. Parameters that affect the geometry and thus the
discretization have not been discussed in this work. We restrict ourselves to refer to [42, 43].
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