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Computational simulation of complex engineered systems requires intensive computation and a significant amount of
data management. Today, this management is often carried out on a case-by-case basis and requires great effort to track
it. This is due to the complexity of controlling a large amount of data flowing along a chain of simulations. Moreover,
many times there is a need to explore parameter variability for the same set of data. On a case-by-case basis, there
is no register of data involved in the simulation, making this process prone to errors. In addition, if the user wants to
analyze the behavior of a simulation sample, then he/she must wait until the end of the whole simulation. In this context,
techniques and methodologies of scientific workflows can improve the management of simulations. Parameter variability
can be put in the general context of uncertainty quantification (UQ), which provides a rational perspective for analysts
and decision makers. The objective of this work is to use scientific workflows to provide a systematic approach in:
(i) modeling UQ numerical experiments as scientific workflows, (ii) offering query tools to evaluate UQ processes at
runtime, (iii) managing the UQ analysis, and (iv) managing UQ in parallel executions. When using scientific workflow
engines, one can collect data in a transparent manner, allowing execution steering, the postassessment of results, and
providing the information for reexecuting the experiment, thereby ensuring reproducibility, an essential characteristic
in a scientific or engineering computational experiment.

KEY WORDS: sparse grid stochastic collocation method, scientific workflows, provenance, computational
fluid dynamics, parallelization, adaptive sparse grid

1. INTRODUCTION

The complexity involved in engineering systems has been frequently tackled with the use of sophisticated models on
computational engineering experiments. That, from the decision maker’s standpoint, requires the use of robust and
reliable numerical simulators. Often, the reliability of those simulations is disrupted by the inexorable presence of
uncertainty in the model data, such as inexact knowledge of system forcing, initial and boundary conditions, phys-
ical properties of the medium, as well as parameters in constitutive equations. This enforces the need for efficient
uncertainty quantification (UQ) methods for the computation of confidence intervals in computed predictions, the
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assessment of the suitability of model formulations, and/or the support of decision making during the experiment
analysis.

Computational UQ experiments traditionally rely on the Monte Carlo method [1]. This method requires the gen-
eration of an ensemble of random realizations associated to the uncertain data and then employs deterministic solvers
repeatedly to obtain the ensemble of data that should be processed to estimate final results mean and standard de-
viation. The implementation of the Monte Carlo method is straightforward, but its convergence rate is very slow
(proportional to the inverse of the square root of the number of realizations) and often infeasible due to the large
amount of CPU time needed.

Another technique that has been applied recently is the so-called stochastic Galerkin (SG) method, which employs
polynomial chaos expansions to represent the solution and inputs leading to stochastic differential equations [2]. The
Galerkin projection minimizes the truncated expansion error. The main SG drawback relies on its need for solving a
system of coupled equations, which requires efficient and robust solvers and, most importantly, the modification of
an existing deterministic code. This last issue entails difficulties on using commercial or already-in-use codes. The
nonintrusive stochastic collocation (SC) method [3], addresses this point. SC methods are built on the combination
of interpolation methods and deterministic solvers. SC methods require the solution of deterministic problems cor-
responding to points of an abstract random space. Similarly to SG, SC methods achieve fast convergence when the
solution possesses sufficient smoothness in random space [4].

In any case, running intensive computational UQ experiments often need special software frameworks. They are
usually composed by several programs that implement UQ methods. These programs are computationally intensive
and consume and produce a large amount of data. As the computational experiment complexity increases, running
these simulations becomes a challenge. One available solution is provided by the design analysis kit for optimization
and terascale applications (DAKOTA) project [5]. DAKOTA offers an extensible framework to integrate UQ into
existing simulation codes. Specifically for UQ analysis, DAKOTA contains a number of important stochastic tools
that can be linked to existing numerical codes. Here, we present a different solution for handling the challenges posed
by UQ when applied to high demanding computational scientific and engineering experiments.

To help scientists and engineers in managing resources involved in computational experiments, scientific work-
flows are gaining much interest. A workflow may be defined as a model of a process, which consists in a series of
activities and its dependencies [6]. A scientific workflow structures the processing of a simulation as a graph of ac-
tivities, in which vertices correspond to data processing activities and edges represent the dataflow between them.
Workflow activities are associated to scientific or engineering applications that prepare, process, and analyze data.
Scientific workflow management systems (SWfMS) [7] are software systems that support the definition, execution
and monitoring of scientific workflows. While DAKOTA is focused on supporting UQ, SWfMS are generic tools for
scientific experiments, such as structural analysis, computer fluid dynamics (CFD), astronomy, bioinformatics, among
others [7]. Therefore, by adopting this generic tool all scientific/engineering experiments can integrate its execution
data (i.e., provenance data) and obtain a uniform register of all computational experiments.

Although a computational experiment may be modeled as a scientific workflow, controlling its large number of
variations and executions is far from being trivial. It can be very complex to manage the execution of thousands
of scientific activities and to control all data generated. A key concept to help this management is the provenance
registration of data generated by the workflow. Provenance data give the history of the ownership or location of
data and are seen as a way to help reproducing the experiment [8]. Provenance data provide information to answer
complex queries regarding the experiment. These answers can be used to refine and enhance the obtained results.
Another important aspect is that provenance databases accumulate experiment data along several years. It is a valuable
knowledge that can serve for long-term analysis and assist decisions regarding new experiments. Provenance data
can also be used to identify bottlenecks in the execution and to assess performance data [9]. This is particularly
important because computational UQ experiments often demands high-performance computing (HPC) environments
for producing results in a feasible time. This poses yet another challenge: managing a large amount of runs on a remote
HPC machine and gathering provenance data from these runs.

One of the emerging workflow execution engines that supports parallel execution of scientific workflows in HPC
environments is Chiron [10]. Chiron aims at reducing the complexity involved in designing and managing parallel
executions within computational experiments. In this paper, we have used Chiron to model and evaluate two UQ
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workflows. The first is a fluid-structure interaction workflow, related to the problem of vortex-induced vibrations in
risers. We also employed Chiron to perform a sensitivity analysis workflow for computing model coefficients in large
eddy simulation (LES) of turbulence. These workflows fit well as many-task-computing (MTC) applications [11].
Computational results show that a systematic approach for distributing parallel scientific and engineering applications
is viable, saving time and reducing operational errors, with the additional benefits of querying provenance data during
runtime.

The paper is organized as follows: Section 2 briefly presents the mathematical background for the UQ methods
used in the this paper. Section 3 presents Chiron and discusses how it can be used as an enabling technology to support
UQ analyses. Section 4 presents results using the UQ workflows. Finally, Section 5 offers conclusions.

2. MATHEMATICAL BACKGROUND AND STOCHASTIC COLLOCATION

Often, predictive models are based on either partial or ordinary differential equations representing the physics of the
systems to be simulated. Here, the uncertainty on those models is introduced through random variables (or fields)
within a probabilistic perspective yielding a mathematical problem consisting of stochastic partial differential equa-
tions (SPDEs) to be solved. The formal framework is built with a complete probability space(Ω,F ,P), whereΩ is
the event space,F ⊂ 2Ω is theσ-algebra of subsets inΩ andP : F → [0, 1] is the probability measure.

Considering a general differential operatorL defined on ad-dimensional bounded spatial domainD ⊂ Rd, (d =
1, 2, 3) with boundary∂D and a time intervalI = [0, T ], the mathematical model leads to the following set of SPDEs
having as solution, forP almost everywhereω ∈ Ω, the stochastic field (or process)u(x, t,ω) : D × I × Ω −→ R:

L(x, t, ω; u) = f(x, t, ω) x ∈ D (1)

B(x, t, ω; u) = g(x, t, ω) x ∈ ∂D (2)

u(x, 0, ω) = u0(x,ω) x ∈ D, (3)

wherex = (x1, . . . , xd) ∈ Rd, t is time coordinate, andu(ω) = (u1(ω), . . . ui(ω)) ∈ Ri, i ≥ 1. Besides,B
represents a boundary operator, the fieldsf andg are source terms, andu0 is the initial condition, possible random to
account uncertainties at the start of the process. The notation used in this section is similar to the one adopted in [12].

To deal with the probability space in a computational simulation, we need to set the basis for building discrete
approximations. This can be accomplished by reducing the original infinite dimensional space to one characterized by
a finite number of random variablesY = [Y1(ω), . . . , YN (ω)]. Often, this dimension reduction is attained by using a
truncated spectral representation of the input data obtained through a Karhunen-Loève expansion [13].

Therefore, following [14], the solution of Eqs. (1)–(3) can be represented by the same set of random variables
{Yi(ω)}N

i=1, e.g.,
u(x, t, ω) = u[x, t, Y1(ω), . . . , YN (ω)]. (4)

Now, assuming that{Yi}N
i=1 are independent random variables with probability density functionsρi : Γi → R+, and

their imagesΓi ≡ Yi(Ω) bounded intervals inR for i = 1, . . . , N , the joint probability density ofY holds

ρ(Y) =
N∏

i=1

ρi(Yi) ∀ Y ∈ Γ. (5)

Thus, for a fixedY on the discrete random domain, the original infinite dimensional problem corresponds to a deter-
ministic problem defined onD × I that can be solved by standard numerical techniques. Indeed, classical stochastic
simulations methods, such as Monte Carlo, explores this view by sampling over the random domain, following the
probability distribution function (PDF) of the input data and solving the resulting deterministic problems. The re-
sults are postprocessed in order to describe the sought solution statistics. Commonly, these statistics are restricted to
low-order moments.

Stochastic collocation also relies on the same mathematical background, but unlike direct Monte Carlo sampling,
the{Yi}M

i=1 points of the multidimensional stochastic space are chosen, such as to construct a polynomial interpolation
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of the problem solution in the stochastic spaceΓ ⊂ RN , the support of the random variables coming from a tensor
product among the supports of each{Yi}. Because collocation requires only the solution ofM of deterministic
problems, its computational implementation consists only of a stochastic wrapper around a deterministic kernel. This
nonintrusive implementation makes collocation quite attractive, as reliable existing deterministic codes can be used
without almost any extra effort. Moreover, any tools already in place, such as the scientific workflows described
hereafter, can be adapted in order to optimize the simulations from a computational standpoint.

Full-tensor products of the corresponding 1D interpolation rule does not represent a viable alternative as the
stochastic dimension increases. The resulting number of support points would lead to prohibitively computational
costs. In order to diminish this burden and make viable the stochastic simulations using collocation, sparse grids
have been employed with success (see [12, 15, 16]). The Smolyak algorithm [17] leads to a very efficient manner to
construct interpolation functions specially due to the reduced number of support nodes required.

Here, in order to make the present text self-contained, we briefly reproduce the presentation of the Smolyak
algorithm in [12]. A 1-D functionf : Γj → R, can be interpolated as follows:

U i(f) =
mi∑

j=1

f(Y i
j ) · ai

j , (6)

whereai(Y) are interpolation functions indexed byi, which denote the approximation level, and computed on the
support nodes,

Xi = {Y i
j |Y i

j ∈ Γ for j = 1, . . . , mi}, (7)

with mi as the number of elements of the setXi. The passage from 1D interpolation to the multivariate case is carried
out with tensor products that lead to

(U i1 ⊗ . . .⊗ U iN )(f) =
m1∑

j1=1

· · ·
mN∑

jN=1

f(Y i1
j1

. . . Y iN
jN

) · (ai1
j1
⊗ · · · ⊗ aiN

jN
), (8)

which provides a basis for the application of the Smolyak algorithm. The Smolyak algorithm results in the interpolant
Aq,N (f) built on a sparse set of the original grid; that is,

Aq,N (f) =
∑

q−N+1≤|i|≤q

(−1)q−|i| ·
(

N − 1
q − |i|

)
· (U i1 ⊗ . . .⊗ U iN ), (9)

wherei = (i1, . . . , iN ) ∈ NN , q ≥ N , AN−1,N = 0, |i| = i1 + · · · + iN , andik is the interpolation level alongkth
random dimension. Thus, considering4i = U i −U i−1, the resulting algorithm can be recast in a hierarchical way as
follows:

Aq,N (f) =
∑

|i|≤q

(4i1 ⊗ . . .⊗4iN )(f) = Aq−1,N (f) +
∑

|i|=q

(4i1 ⊗ . . .⊗4iN )(f). (10)

Equation (10) suggests an implementation based on the use of the results obtained in previous approximation levels
if additional precision is required. Besides, if convenient support nodes are chosen, this implementation can explore
nested sets of points (e.g.,Xi ⊂ Xi+1). Combining these two ingredients, the computation of the interpolant in a
higher level only demands the computation of the function value on the nodes that are added to the grid when moving
up in the hierarchical construction. Moreover, the surpluses for each point of the stochastic grid can be computed in
parallel, which increases the computational performance considerably [12].

Therefore, the Smolyak algorithm becomes a rational way of building approximations of any stochasticu ∈
D × I × Ω as follows:

u(x, t, Y) =
∑

|i|≤q

∑

j∈Bi

wi
j(x, t) · ai

j(Y). (11)

The above formal representation reveals the core of the stochastic collocation method used to solve Eqs. (1)–(3). As
mentioned earlier, a deterministic problem is solved for each point of the sparse grid and the solution is then extended
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to any other point of the random space. From this equation, it is also possible to extract the statistics, such as low-
order moments, by either sampling or performing numerical quadratures in a multidimensional space. Besides, even
the PDF of the random variable can be estimated from histograms produced with a large number of samples [12].

The choice of the support nodes and the interpolation functions lead to different approximation schemes; one is
based on Clenshaw-Curtis points and Lagrangian interpolation and will be referred to as a conventional sparse grid
collocation method (CSGC). The second method explores piecewise linear hat functions and equidistant Newton-
Cotes support nodes, which are suitable for the adaptive sparse grid collocation method (ASGC) proposed in [12].

3. CHIRON: ENABLING TECHNOLOGY FOR UNCERTAINTY QUANTIFICATION

Realistic computational experiments often explore large numerical models to be simulated over large sets of parame-
ters. Executing a sequence of programs exploring a varied set of parameter values is commonly known as a parameter
sweep [18]. In particular, a number of stochastic simulation techniques, such as discussed here, can be implemented
with the aid of a parameter sweep. Modeling the chaining of programs on a parameter sweep that involves a scientific
or engineering simulation is a complex task and currently may be done with the help of a scientific workflow system.
SWfMS is a software that supports scientific workflow modeling and execution, collecting provenance data during the
design and execution of the workflow. These are tools that offer a graphical view of the problem, making it easier to
control the versions of the experiment and to gather provenance data for later analysis. SWfMS also flexibilizes the
computational experiment facilitating its maintenance [19]. However, large-scale experiments often require the use of
a parallel computing environment. Few SWfMS are ready for parallel execution in current HPC environments. Thus,
to enable the efficient use of such resources, we have used Chiron [10], a datacentric scientific workflow engine that
executes, in parallel, scientific applications.

Chiron focuses on the parallel execution of the workflow. Figure 1 presents a simplified view of how Chiron
works on an HPC cluster parallel environment where A, B, and C represent the activities of the workflow. Hence, the
users design their workflows on their personal computers. Then, they put their workflow with the input parameters
they want to be consumed by the workflow on the cluster submitting their job to a HPC scheduler, such as Condor
[20] or PBS [21]. The scheduler calls Chiron to handle the execution of the workflow. Basically, Chiron coordinates
the workflow parallel execution, assigning different input parameter sets to computing nodes. Chiron uses a data-
centric approach using a scientific workflow algebra to handle the workflow parallel execution efficiently. The algebra

FIG. 1: Chiron execution architecture.
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standardizes data consumption and production and also opens horizons for workflow optimizations [10]. Workflows in
Chiron are defined through a declarative language (XML), which transforms into an algebraic expression that enables
workflow automatic optimization. Chiron also establishes an optimized parallel execution plan for the workflow. The
parallel execution of a workflow introduces several difficulties for collecting provenance data, because these data are
also distributed across the HPC environment in different nodes in a cluster or even in different virtual machines in
a cloud environment [22]. On the Chiron-generated database, only provenance data are stored, such as metadata and
several extracted results. Intermediate application data, such as huge files and other complex computation results,
are only referenced in the database. These files are kept in the application storage area. Provenance is essential for
scientific and engineering experiments and ensures that the experiment can be reproduced over different conditions.
Most parallel approaches for scientific workflow execution provide weak support for distributed provenance gathering
[23]. Chiron provides native support for distributed provenance by storing provenance data during the execution of
all activations. Thus, it is possible to monitor the status of the experiment and available results through runtime
provenance queries. Users can also perform provenance queries to check whether execution failures have occurred.
Monitoring some specific attributes, results or checking the elapsed time of a given task may indicate that a failure
happened. Such information can be used to refine the task (to prevent it from failing again) and resubmit it. Depending
on the gathered results, the scientist/engineer may decide to add extra sets of parameters on the parameter sweep or
make other decisions regarding the experiment.

Chiron requires additional software such as PostGres [24], Java, and additional libraries like MPJ [25] and
HSQLDB [26]. They are open source softwares that can be made available in HPC centers. The libraries are included
on Chiron distribution code. Chiron is available on clusters of the High-Performance Computing Center at the Federal
University of Rio de Janeiro for any project or scientist that desires to use it. There are other SWfMS available for
use that are publicly distributable, such as VisTrails [27] or Swift [11]. However, differently form these systems, Ch-
iron supports users in complex exploratory processes involving dynamic workflows by providing provenance queries
services during runtime parallel executions.

4. RESULTS

In this section, we evaluate SC with Chiron for carrying out a UQ analysis in two different situations. Both situations
present challenges concerning high-performance simulations and uncertainty propagation through predictive models.
We intend to present viable and efficient ways for supporting UQ with a scientific workflow. The simulation codes are
built in a nonintrusive way such that the collocation implementation is wrapped around deterministic kernels. In both
examples, we explore features of the computational implementation and aspects of the uncertainty analysis.

Traditionally, CFD is one of the most demanding areas of scientific computing and always on the leading edge
of the available supercomputer technology. Recently, there is growing interest on complex computational mechanics
studies involving verification, validation and uncertainty quantification, which usually require a massive amount of
simulations and generate huge data [28]. This scenario increases the complexity in managing such analysis. Scientific
workflows are promising solutions to automatically support such exploratory demands, in addition to providing less
error-prone environments. In particular, because the amount of generated data increases dramatically, provenance
plays a key role in this scenario.

The first example deals with fluid-structure interaction (FSI) in the context of vortex-induced vibrations (VIV),
which is central to the design of risers and floating structures in offshore engineering. Here, the VIV phenomenon is
described by a simple model, often used by engineers in the initial design stages, that, despite its simplicity, is capable
of tracking important aspects of the dynamics. A long-term response is a key ingredient for understanding the fatigue
failure mechanisms of riser structures. Because the long-term statistics lead to a great amount of correlated data, these
can be obtained and handled with the help of our enabling computational infrastructure.

The second example is devoted to a critical assessment of LES models. The inherent complexity of turbulent flows
demands the use of refined grids in time and space for representing the multiscale character of the involved phenom-
ena, especially the dissipation mechanisms. The use of direct numerical simulation (DNS) often leads to prohibitive
computational costs that scales with the Reynolds number, in that case, inversely proportional to the smallest scale
to be captured within the simulation. Despite some recent improvements on DNS schemes [29], in many practical
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engineering applications, LES models, which rely on adding extra dissipation, are often used. Here, a sensitivity anal-
ysis with respect to a LES parameter, similar to the one proposed in [30], is pursued in a benchmark problem. In this
example, emphasis is placed on UQ performed within a stabilized finite element HPC code coordinated by a scientific
workflow.

4.1 Vortex-Induced Vibrations

Vortex-induced vibration is caused by the vortex shedding behind bluff bodies and may lead to degradation of struc-
tural performance or even structural failure. This is a particularly important issue for offshore structures, such as pipes,
risers, and mooring lines. Several ways have been pursued to predict the dynamic response of structures undergoing
large-amplitude vibrations induced by the surrounding flow. One of the most effective prediction methods consists of
solving the coupled fluid-structure system. The flow is modeled by Navier-Stokes equations, and the structure, due to
its rigidity, is often characterized by a simple oscillator with one or two degrees of freedom. However, the application
of this approach to real problems would lead to prohibitive costs in the preliminary design phase. An alternative, con-
sidering the trade-off between costs and precision, is to use phenomenological models based on wake oscillators [31]
that replace the vortex-shedding mechanisms of the flow by simple models. Here, we use the model proposed in [32]
that captures important features of the VIV dynamics after a calibration of its parameters, taking into consideration the
available experimental data. This calibration is thus a source of modeling uncertainties. Consider the elastically sup-
ported rigid circular cylinder shown schematically in Fig. 2. The coupling wake and structure oscillators are described
by the following equations:

ÿ +
(

2ζδ +
γ

µ

)
ẏ + δ2y = Mq (12)

q̈ + ε(q2 − 1)q̇ + q = Aÿ, (13)

with

M =
CL0

4π3St2µ
, δ =

Ωs

Ωf
=

1
StUr

, γ =
CD

π2St
, Ur =

2πU

ΩsD
, St =

ΩfD

2πU
, µ =

m

ρD2(π/4)
,

wherey is the dimensionless in-plane cross-flow displacement of the structure,q is the dimensionless wake variable
associated with the fluctuating lift coefficient of the structure.A andε are empirical parameters,ζ andδ are the
structure-reduced damping and angular frequency, respectively,γ is a stall parameter,µ is the mass ratio,M is
the mass parameter that simulates the effect of the wake on the structure,CL0 is the reference lift coefficient of

FIG. 2: Wake oscillator model for vortex-induced vibration.
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the structure,D is the diameter of the cylinder,U is the free-stream velocity of the uniform flow,St is the Strouhal
number,Ωs andΩf are respectively the vortex shedding and structural angular frequencies,Ur is the reduced velocity,
CD is the drag coefficient of the structure,m is the structural mass, including the fluid-added mass, andρ is the fluid
density. The coupling empirical parameter is such that,A = 10, if 0 ≤ δ ≤ 1, or A = 4, if δ > 1. The dependency
of A on the frequency ratioδ, including a jump, might entail abrupt changes on the structure response. Whenever the
shedding frequency approaches the natural frequency of the structure, the coupled system enters in the lock-in regime.
The amplitude of the structural response during lock-in achieves a maximum and, thus, this is considered a critical
mode of vibration. A schematic view of the lock-in phenomenon is depicted in Fig. 3, where the maximum amplitude
in the steady-state regime is plotted as a function of the reduced velocityUr in the range[0, 16]. In order to avoid
the danger of failure, computational models are built aiming at identifying the narrowband of the reduced velocity
corresponding to lock-in. Bearing that in mind, we intend to investigate the impact of uncertainties on the predictions
drawn from those computations. Figure 3 compares the differences, which are more pronounced along the lock-in,
among the system response obtained with the models in [32, 33] and experimental data. The models differ only in
the way parameters are determined. As we can see in Fig. 3, the lock-in response shows a significant sensitivity with
respect to those parameters, which motivates the following analysis, which is carried out using the model in [32], as
its predictions are closer to the available experimental data.

Two parameters are considered uncertain, the coupling parameterA and the lift coefficientCL0 and, thus, modeled
as random variables. The former is parametrized asA = Ā cf , with Ā the mean value andcf a random variable to be
described in the sequence. The meanĀ assumes the deterministic values assigned before (e.g.,Ā = 10, if 0 ≤ δ ≤ 1,
or Ā = 4, if δ > 1). The choice of those two parameters relies on a sensitivity analysis about the model parameters’
influence on the system response, which is not reported here for the sake of brevity. Moreover, both parameters are
to be determined through experiments and then subject to unavoidable variability. In order to illustrate the effect of
uncertainties propagation on the computed results, we assume the following probabilistic models:

CL0 = CL0 + σCL0
ξ1 (14)

cf = cf + σcf
ξ2, (15)

where mean and variance are given by(CL0 ,σCL0
) = (0.3, 0.01) and(cf , σcf

) = (1, 0.2). The random variables
ξi(i = 1, 2) with support [-1,1] are assumed independent and uniformly distributed. Global polynomial interpolations,
such as those employed in CSGC, might not be able to handle the presence of discontinuities or sharp gradients in
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FIG. 3: Maximum amplitude of oscillation as a function of the reduced velocityUr.
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the solution with respect to the random space. More efficient and robust methods have been designed in order to cope
with those drawbacks [see [12] and references therein]. Motivated by the abrupt change on the response within the
lock-in regime, we adopted here the ASGC introduced in [12]. This method introduces a local refinement based on the
hierarchical sparse grid collocation discussed earlier. Note that the discontinuity on the uncertain parameterA might
contribute to the existence of sharp gradients on the response. We performed a parameter sweep over the deterministic
reduced velocityUr in the range[1, 16] with constant step0.1. This yields160 stochastic problems to be solved using
both Monte Carlo and ASGC methods.

The Monte Carlo analysis was performed as a reference solution. Chiron automatically stores provenance data,
such as files consumed and produced, standard output and standard error, execution time, and the computer node that
executed the program. Additionally, for both Monte Carlo and ASGC analyses, we also stored important provenance
data (i.e., number of points, converged error, average, and variance of energy that can be queried during runtime). In the
Monte Carlo analysis, the number of samples is fixed on 30,000 and we used the provenance data to check whether the
simulation converged in all cases. In the ASGC analysis, the number of interpolation points (interpolation level) is left
free to vary according to an assigned error [12]. Monitoring the number of points, stored in the provenance database,
is important because each case has two stopping criteria: the first is related to the acceptable error being reached and
the second registers whether the program exceeds the number of points used. However, it is not acceptable if the
execution is stopped by the second criterion. When this occurs, the case is marked to be adjusted and reexecuted with
new input parameters.

Because of the large amount of data and complexity of the analysis to be carried out, we used Chiron to coordinate
the parallel stochastic simulations. In order to explore the parallel environment and the flexibility provided by Chiron,
we use 32 cores to execute simultaneous simulations. For Monte Carlo, each processor is allocated to a fixed reduced
velocity, which handles the corresponding stochastic simulation. As the ASGC computational kernel is implemented
as a parallel code, a different configuration is employed. Each reduced velocity leading to an adaptive stochastic
analysis is allocated to a group of eight processors running in parallel. Each one of these processors is made responsible
for computing the surplus associate to a grid point.

There are significant changes in the response of the flow-structure-coupled system, characterized by larger am-
plitude responses and synchronization of the oscillating frequency within the lock-in regime. Thus, we expect to
observe distinct convergence behavior with respect to the random dimension for a fixed reduced velocity. Besides, for
time-dependent problems, the error of the approximation of the stochastic response might grow substantially during
long-term integration, as described in [34]. Employing adaptivity has represented a viable alternative in order to cope
with those drawbacks inherent to the lock-in regime. No instabilities along the time integrations were detected, and a
fixed-error threshold was previously assigned such that a minimum accuracy was ensured automatically by increasing
the interpolation level when required. Indeed, the level of refinement was used as the provenance target.

Now, we turn our attention toward the uncertainty analysis of the lock-in phenomena. We selectUr = 5.7 as
the reference reduced velocity because it corresponds to a response amplitude peak for the deterministic analysis in
Fig. 3. Thus we perform a UQ analysis using both uncertain parameters equal to their mean value. Figures 4 and
5 show the evolution of the meanµ and standard deviationσ of the structure responsey(t, ω). In both cases, we
also plot a reference solution computed with Monte Carlo. At this point, it is interesting to note the contrast between
the deterministic solution (Fig. 3) and the stochastic mean response shown in Fig. 6. Extreme response of structures,
particularly within the offshore industry, are often characterized by means of the probability of trespassing a certain
safe threshold. Along with that, the first time in which the structure attains such a threshold is considered a critical
point. Accordingly, we adopted as a quantity of interest to be tracked along the simulationsµ + 2σ, which is marked
with a dot in Figs. 4 and 5. That represents a rough estimation of the maximum amplitude to be achieved by the
structure with nonzero probability to occur. Its dependence with the reduced velocity is presented in Fig. 6. A more
refined analysis, involving reliability of the structure, which often is linked with events of low probability, is enabled
by obtaining the statistics tails contained in a PDF, such as the one plotted in Fig. 7 for the fixed timet = 149.6
andUr = 5.7. The PDF was approximated by sampling the interpolation function calculated by the ASGC method.
Replacing an exact solution, not available for this example, by the aforementioned MC simulation, we estimate the
time evolution of the error approximation. Figures 8 and 9 show the time-dependent pointwise relative error between
the MC and ASGC solutions, for the meanµ and the standard deviationσ, respectively. From Figs. 8 and 9, we can
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FIG. 4: Evolution of average for reduced velocityUr = 5.7. A dot was plotted to label the critical point (cr) at
t = 149.6.
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FIG. 5: Evolution of standard deviation for reduced velocityUr = 5.7. A dot was plotted to label the critical point
(cr) att = 149.6.

observe that the adaptive scheme is able to handle potential numerical instabilities triggered along time [34] and keep
the approximation error within acceptable levels.

4.2 Lid-Driven Cavity Flow

Large-eddy computational models have become popular as a simulation tool for complex turbulent flows. LES aims
at reducing computational costs by introducing a spatial low-pass filter, often implicitly defined through the numerical
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FIG. 7: PDF approximation of the responsey(t = 149.6, ω) computed forUr = 5.7 at the respectively critical point
(cr).

grid. The filtering leads to subgrid-scale stresses that must be modeled. The use of such approach has motivated a large
body of research. A critical review, with particular emphasis on the multiscale character of turbulence can be found
in [30]. LES methods are built using different discretization schemes, encompassing finite differences, finite volumes,
finite elements, and spectral methods. The complexity of the resulting numerical models makes analysis troublesome,
and therefore, to get a deeper understanding of LES applicability, numerical investigation emerges as a viable way.
Here, we perform a preliminary assessment of LES turbulent simulations using a stabilized finite element method and
a static Smagorinsky model for representing the subgrid stresses dissipation. This analysis is carried out by evaluating
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the sensitivity of the computed response to the Smagorinsky parameter, which will be considered a random variable
aiming at estimating the variability of LES predictions with respect to uncertainty in the model coefficient. We have
chosen the 3D lid-driven cavity flow at Reynolds number12×103 [35] as a benchmark problem for this analysis. That
is a confined flow within a cubic region submitted to no-slip boundary conditions on the walls and such that the flow is
driven by the imposed lid motion. At that point, it is worthwhile to make clear that the stochastic approach used here
is not related to the classical Reynolds average Navier-Stokes (RANS) equations, in which the velocity fluctuations
associated to turbulence are viewed as random variables.

EdgeCFD [36, 37], a deterministic flow solver for Navier-Stokes equations, is employed in this study. The main
characteristics of this incompressible flow solver are streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabili-
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zing/PetrovGalerkin (PSPG) [38] stabilized finite element formulation; implicit time-marching scheme with adaptive
time-stepping control; advanced inexact Newton solvers; edge-based data structures to save memory and improve
performance; support to message passing, and hybrid parallel programming models; LES extensions using a classical
Smagorinsky model or the variational multiscale method [39]. As is well known, finite elements might suffer from
numerical instabilities in the presence of the convective term and also due to the use of equal-order interpolations for
velocity and pressure. That can be remedied by a stabilized formulation such as the one adopted here.

As stated earlier, we adopted the modeling of turbulence by LES. In this model, the Navier-Stokes equations
are solved for larger scales, whereas the effects of smaller scales are approximated through an augmented viscous
dissipation that is included in the stress tensor. Hence, in the static Smagorinsky model, these scales are modeled by
adding a term called turbulent viscosity that is given by

νT = (CsLe)2|S|, (16)

whereS stands for the symmetric part of the local strain rate tensor andLe to a filter width, usually defined as the
cubic root of the element volume, andCs is the Smagorinsky constant. For this reason, the sensitivity analysis is
carried out considering the Smagorinsky parameter as a random variable described by

Cs = Cs + σCsξ, (17)

where(Cs, σCs) = (0.35, 0.35), andξ an independent random variable with uniform distribution taking values
on (−1, 1); therefore,Cs varies in the range(0, 0.7). Those intervals, encompassing the standard choice for the
Smagorinsky constantCs = 0.1, are chosen such that comparisons with the results in [30] would be possible. The
computational domain of the cavity is discretized with a nonuniform mesh of323 tetrahedral elements. Figures 10
and 11 show, respectively, the coarse and the fine computational meshes and their respective velocity fields at the end
of simulation time. These solutions were calculated withCs = 0.1 and only used as a reference.

Despite the simple domain, turbulence develops complex flow patterns inside the cubic region compatible with
the high Reynolds number of this problem [35]. This makes this problem quite attractive for the present purposes.
Because the LES models directly impart the energy dissipation mechanisms along the several flow scales, the total
kinetic energy is adopted as output variable on the present analysis. Each simulation is carried out within an inter-
val corresponding to 360 time steps, insuring the development of the main flow features. A deterministic analysis
regarding the convergence of the employed finite element formulation is presented in [40].

FIG. 10: Velocity field: coarse mesh323.
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FIG. 11: Velocity field: reference mesh1283.

The stochastic collocation method is implemented in its classical form using Lagrange polynomials as interpola-
tion functions and Clenshaw-Curtis as support nodes. Again, Monte Carlo simulation was used to provide a reference
solution. After a preliminary analysis taking into the consideration the convergence of key flow variable mean values,
the number of samples for Monte Carlo is fixed in 1000. The MC reference solution is achieved using CSGC with
eight approximation levels, which means that 257 support nodes were used. For these values, the difference between
the mean of the solutions is on the order of1.0×10−2, which represents a good approximation for the purposes of this
test.

Here, the UQ capabilities are embodied in the workflow generated by Chiron. The provenance information regis-
tered is then used to evaluate the statistical moments. This is important to insure reliability of the computed statistics
because provenance data could be lost without a structured and systematic controlled approach such as Chiron. Thus,
in this case, we could track the difference between MC and CSGC solutions and determine an adequate interpolation
level to ensure a minimum error. In this way, the system could, if necessary, automatically increase the interpolation
level and resubmit the experiment to obtain the statistical moments of the solution with a prefixed error level.

The computational implementation in Chiron starts with allocating a number of cores, which in the present case
is 32, each one running the deterministic EdgeCFD finite element code. After that, going through the workflow, the
output data are postprocessed and the kinetic energy computed. Finally, the statistical moments are computed and
made available for analysis, including the stochastic convergence evaluation for both MC and CSGC methods.

Again, provenance data, such as files consumed and produced, standard output and standard error, execution time,
and the computer node that executed the program, are used in real time to verify if any deterministic solver failed. Thus
far, none have failed. Figure 12 presents the hierarchical evolution of the grid on the random domain for the CSGC
solution, and Table 1 summarizes the computational data associated with the stochastic simulations. Computational
performance expressed by the runtime analysis for both MC and CSGC corresponds to parallel executions. That leads
to a significant speed up of the analysis when compared to sequential sweep over the input points on the random
domain. It is worth mentioning that the computational costs of both simulation methods are strongly related to the
number of deterministic problems to be solved until convergence is reached. CSGC is way more efficient than MC on
those experiments.

Note by the data in Table 1 that, for instance, the total serial MC simulation time would be more than 4000 h to be
completed. Thus, we observe a significant speed-up improvement for this kind of analysis using Chiron. After evalu-
ating the performance of the stochastic collocation as a stochastic simulation tool in a complex turbulent flow, we now
summarize the sensitivity of the LES model to parametric uncertainty linked to the subgrid model. We assume that the
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TABLE 1: Number of simulations and total time for MC
and CSCG methods

Number max of simulations MC 1000
Number max of simulations CSGC 257
Single representative serial simulation time4.4 h
Parallel MC total time analysis 126.1 h
Parallel CSGC total time analysis 39.2 h
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FIG. 12: Unidimensional sparse grid for increasing interpolation level.

kinetic energy is an ergodic process, inasmuch the mean and variance achieve constant values after a little while. That
enables the use of Fourier transform to obtain the energy spectra. Figure 13 depicts those energy spectra correspond-
ing to the computed results, for the coarse mesh of323 elements, with stochastic collocation (µECav32CSGC curve
in the figure) and Monte Carlo (µECav32MC curve in the figure), which are not distinguished in the scale of Fig. 13.
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FIG. 13: FFT of total kinetic energy mean calculated with Monte Carlo and CSGC.
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Moreover, we also plot the spectrum of the kinetic energy obtained using a nominal model corresponding toCs = 0.1
(Cav320.1 curve in the figure), a typical value for the Smagorinsky coefficient. Those results are compared to the ones
obtained with the fine mesh simulation and the reference model (Cav1280.1 curve in the figure). Figure 14 shows
the mean value of the global kinetic energy evolution with time and its variability is plotted with bars centered at the
mean and of length twice the standard deviation. Those results are labeled in Fig. 14 as (µE ± 2σECav32CSGC) and
(µE±2σECav32MC) for results computed with Monte Carlo and CSGC, respectively. It must also be noted from this
plot, that due to the nonlinearity of Navier-Stokes equations, the difference between the mean kinetic energy obtained
with the stochastic model and the kinetic energy computed using the reference deterministic model, the last labeled as
(Cav320.1). Figure 14 also contains, as a check on the capability of the LES model to reproduce key characteristics of
the turbulent flow, the plot of the energy evolution computed with the fine mesh (Cav1280.1). Although this solution
cannot be seen as a DNS computation, we expect that the role of the Smagorinsky model significantly decreases be-
cause the filter length parameter is much smaller. Besides, in [40] the same fine mesh was used and its energy decay
rate compares reasonably with theoretical results.
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5. CONCLUSION

We have explored the capabilities of Chiron, a scientific workflow engine especially designed to manage and support
simulation-based analysis involving large-scale engineering applications using high-performance parallel computers,
in the context of uncertainty quantification. Two different problems, corresponding to two different computational
implementations, demonstrated the flexibility and effectiveness of Chiron for supporting UQ analyses. Gathering and
managing data through provenance control helped in the computation of the probabilistic description of the solu-
tions. The chosen application problems also bear interesting characteristics in terms of UQ analysis, which were
also pursued here. The first example deals with the vibrational response of submerged structures excited by vortex
detachments in the surrounding flow. We adopted a popular engineering model to predict this dynamics, with spe-
cial attention to the lock-in phenomena. Two of the parameters used by this modeling were considered uncertain,
inasmuch as they often are obtained by means of model calibration based on field observations or physical experi-
ments.

The second situation studied a CFD benchmark problem, the lid-driven cavity in turbulent regime. We presented
a preliminary analysis of the performance of a LES model to reproduce the fine scale behavior, translated into energy

International Journal for Uncertainty Quantification



Scientific Workflow Management 69

dissipation of the flow, within a probabilistic perspective. We considered the Smagorinsky coefficient a uniform ran-
dom variable and studied the impact of this uncertainty on the predictions. We intend, in the near future, to further
study this critical evaluation of Smagorinsky model and the present UQ analysis helps on providing a rational basis
for comparisons to available experimental results.

We also checked the performance of stochastic collocation as tool for UQ. Convergence on the random dimension
assessed in those two nonlinear problems by comparisons with Monte Carlo simulation. In our numerical experiments,
the two stochastic collocation methods have outperformed the classical stochastic simulation technique.
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