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Modeling of fluid flow considering radially symmetric reservoirs is common in groundwater science and petroleum
engineering. The Hankel transform is suitable for solving boundary value problems, considering this flow geometry.
Howeuver, there are few applications of this transform for reservoirs with a finite wellbore radius, although there are for-
mulas of the finite Hankel transform for homogeneous boundary conditions. In this work, we refer to them as the Cinelli
formulas, which are used to obtain novel solutions for transient fluid flow in bounded naturally fractured reservoirs
with time-varying influx at the outer boundary, i.e., a technique to incorporate inhomogeneous boundary conditions
based on the Cinelli formulas is developed. An analysis shows that the results of the solutions are highly oscillating
and slowly convergent. Nevertheless, we show that this problem is largely overcome when the long-time solution is ex-
pressed as a closed relationship. Accordingly, we present the characteristic drawdown pressure curves and its Bourdet
derivatives for a double-porosity reservoir with influx recharge. These curves allow us to distinguish between the pres-
sure drops of a single-porosity reservoir with influx recharge from that of a double-porosity closed reservoir, which have
been stated in the literature to resemble one another. Similarly, double- and triple-porosity reservoirs are analyzed.

KEY WORDS: fluid flow model, naturally fractured reservoir, influx at the outer boundary, joint Laplace—
Hankel transform

1. INTRODUCTION

In groundwater science and petroleum engineering, the modeling of fluid flow in underground reservoirs has impact
on project planning and reserve estimates. However, current models for fluid flow in reservoirs have limitations that
affect their accuracy when they are applied in the tasks just mentioned. Therefore, there is a need for including in
the governing equations natural properties such as storage, porosities, permeabilities, wellbore storage, skin factor,
or recharge. Furthermore, new mathematical developments with applications in pumping or well tests (Chen, 1990;
De Smedt, 2011; Ju, 2014, Liu and Chen, 1990; Ozkan and Raghavan, 1988; Wu, 2002; Young, 1992) allow us to
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understand phenomena, which could be challenging otherwise (Cai et al., 2016; Da Prat, 1990; Kuhiman et al., 2015;
Nie et al., 2012; Singhal and Gupta, 2010; Zhou et al., 2019).

Many fluid flow models have exact solutions in Laplace space, but their inverse transforms can be quite complex
to obtain by means of contour integration in the complex plane (&lemzCaldedn et al., 2017; Yao et al., 2012).
Remarkably, the Hankel transform provides a simple way to treat radially symmetric problems, since their inverse
transform formulas are the solutions of the models (Cinelli, 1965; Jiang and Gao, 2010; Sneddon, 1946). One of
these solutions is given by Cinelli (1965); nevertheless, because their relationships are for homogeneous boundary
conditions, they are strongly limited in their application to describe fluid flow in reservoirs associated with a hollow
disk geometry. In order to extend the applicability of the finite Hankel transform derived by Cinelli, Xi and Yuning
(1991) and Wang and Gong (1992) developed a mathematical procedure that can be used for inhomogeneous bound-
ary conditions. In those studies the initial and boundary value problems are expressed as the sum of a dynamic part
with inhomogeneous boundary conditions and a quasi-static part with homogeneous boundary conditions in such a
way that the solution from the quasi-static differential equation can make use of the mentioned formulas. In a similar
fashion, in this work we divided the solution into a stationary and a transient part, which appropriately allows us to
solve the problem with inhomogeneous conditions. By contrast, Xi and Yuning (1991) and Wang and Gong (1992)
solved a hyperbolic model for describing displacement in elastodynamics, while in this study we solve a parabolic
model for describing the fluid flow in a double-porosity reservoir. Models of fluid flow in reservoirs with inhomoge-
neous boundary conditions, for example, influx recharge, have been the subject of different studies (del Angel et al.,
2014; Doublet and Blasingame, 1995; Wang et al., 2017), but, to our best knowledge they have not been analytically
solved for double-porosity systems.

In addition to the Hankel transform, in order to solve partial differential equations, the Laplace transforms can
be jointly used, taking us to the joint Laplace—Hankel transform, or JLHT (Debnath and Bhatta, 2014; Poularikas,
2010). An application in models of fluid flow in reservoirs is found in Babak and Azaiez (2014), where finite and
infinite reservoirs are considered, each of them having a centered well with an infinitely small radius. For hollow-disk
geometry, the finite Hankel transform was used to solve a triple-porosity fluid flow model with a constant pressure and
zero flux at the inner and outer boundaries, respectively, and considering a nhonzero well radius (Clossman, 1975).
Also, the JLHT has been used in the study of crossflow in stratified systems; for instance, Boulton and Streltsova
(1977) provided the relationships of flow through horizontal layers of a fissured aquifer, restricted to have vertical
permeability, and with a wellbore represented as a line source pumping at a constant rate. A similar system with
a partially penetrating well is found in a study by Javandel and Witherspoon (1983). In the early 60s, Katz and
Tek (1962) and Russell and Prats (1962) were the pioneers in the study of crossflow in stratified reservoirs using
the Fourier and the Hankel transforms, respectively. Subsequently, Prats (1986) showed that stratified reservoirs and
single-layer reservoirs have similar behavior for large periods of time. More complex systems were analyzed by Shah
and Thambynayagam (1992): they included two flowing intervals in a partial completion well. On the other hand,
exact solutions by means of other mathematical procedures can be consulted in Gomes and Ambastha (1993) and
Ehlig-Economides and Joseph (1987), for layered aquifers, and in Chen (1989) and Matthews and Russell (1967), for
oil reservoirs. Additional applications of JLHT are found in Carslaw and Jaeger (1959), Debnath and Bhatta (2014),
and Poularikas (2010).

There is a lack of exact solutions using the JLHT for models of fluid flow in bounded or infinite reservoirs.
Partly, this may be due to the complexities inherent to the method that will be exposed in this work. In order to
contribute to the studies in this direction, we use the JLHT to solve the double-porosity model of Warren and Root
(1963) using the following combinations of specific boundary conditions (BCs): Dirichlet-Dirichlet (DD), Dirichlet-
Neumann (DN), Neumann-Dirichlet (ND), and Neumann-Neumann (NN). The inner condition is given by either a
constant terminal pressure or a constant terminal rate. Meanwhile, the outer boundary has a constant pressure or has
an influx recharge defined as a ramp rate function to simulate natural water influx or slow-starting waterfloods from
injector wells (Doublet and Blasingame, 1995). Also, this latter function can be interpreted as rock heterogeneities at
the outer boundary that obstruct the flow channels (del Angel et al., 2014; Doublet and Blasingame, 1995). We note
that our solutions generalize the relationships of fluid flow in a single-porosity medium, which were released in other
works and can be found in Muskat (1934), for DD-BCs; Hurst (1934) and Muskat (1934), for DN-BCs; Matthews
and Russell (1967), for ND-BCs; and in del Angel et al. (2014); Matthews and Russell (1967); Muskat (1934), for
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NN-BCs. Lu et al. (2018, 2019a) give alternative solution methods for fluid flow in a circular or rectangular closed-
boundary reservoir, respectively.

The Warren and Root model has been widely used in well and pumping test analysis (Ahmed and McKinney,
2011; Bourdet et al., 1989; Gringarten, 2008; Kruseman et al., 1994). Nevertheless, the NN-BCs case deserves special
attention, due to the lack of studies in this regard, in such a way that it is important to provide type curves that include
the effects of influx recharge at the outer boundary. Indeed, it has been observed that a single-porosity reservoir with
influx recharge has a characteristic behavior similar to that of a double-porosity reservoir without influx recharge (del
Angel et al., 2014; Doublet and Blasingame, 1995). By extension, it could be expected that a double-porosity reservoir
with influx recharge has a behavior similar to that given by a triple-porosity reservoir without influx recharge. This
observation is attended in this work in order to elucidate whether the drawdown pressures of models with recharge
and without it can be considered equivalent.

The contribution of this work is threefold:

1. Obtain analytical solutions for the aforementioned study cases.
2. Present characteristic behaviors of the drawdown pressure and flux for the study cases.

3. Show the similarities and differences between a model with influx recharge and without it, but this latter case
with an additional porosity.

This work is organized as follows: In Sections 2 and 3, the flow model and the boundary conditions are presented,
respectively. In Section 4, the procedure to find the exact solutions is given. Subsequently, in Section 5, a numerical
validation using the Stehfest method is carried out, the convergence of the Cinelli solutions to the exact result is
analyzed, and a discussion about the stationary solutions is also presented. In Section 6, the characteristic curves of
the fluid flow model are exposed, and a comparison is done between models with influx recharge and without it.
Finally, in Section 7, some general conclusions are drawn.

2. FLOW MODEL

Radial fluid flow in a double-porosity medium is described by the model of Warren and Root (1963). This model
considers a slightly compressible fluid through two overlapping porous systems: matrix and fractures. The matrix
discharges into the fractures, and the fractures carry the flow toward the wellbore. The matrix has a low permeability
and a high storage capacity, while the fracture system has a high permeability and a low storage capacity. It is also
assumed to be a homogeneous and isotropic porous system. An illustration of the reservoir and its fluid flow is given

in Fig. 1.
The Warren and Root model considers an equation for the prelsgimdractures,
ka1 0 [ Ohy h
- 1
ur(’)r((’)r) ¢11 (1)22 1)
and an equation for the pressurgin matrix blocks,
8h1 K1
— ha —h 2
b1c1 5 m —(h2 — ha). (2

In the previous equations, subscripts 1 and 2 indicate the matrix medium and the fracture medium, respectively;
ki, §;, ande;, are the permeabilities, porosities, and total compressibilities of mediuris the fluid viscosity; and
« is the shape factor.

Equations (1) and (2) in reduced units are as follows:

Ohap Ohip 92hp 1 Ohap
_ — I < <
w atD + (1 (.U) atD 67"2D + D aTD ) 1 S TD X TDext (3)
oh
(1-w) mf = A(hap — hap), tp >0, 4
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FIG. 1: Schematic representation of the reservoir and the fluid flow. Drainage area of reservoir is illustrated by a big circle of
radiusrex, While in its center there is a cylinder of raditg that represents the pumping well. Other boundary conditions used in
this work are specified on the right of the figure.

where the dimensionless dependent variables are given by

ho — hi(r,t
071(7"), for constant pressure,
hO - hw
hip = -~ )
ﬂHqKZ [ho — hi(r,t)],  for constant flux.

The dimensionless independent variables are defined as

Kot T
tp = , TpD=— 6
ur2 (d1e1 + daco) T ©)

andthe parameters of the model are

baco or? K1 Text
W=, A= —"—", Tpext=—. (7)
bic1 + doca K2 Tw

In these latter definitions,, is the well radiusy pey; is the dimensionless outer radius;is the fracture storage
coefficient;A is the interporosity flow coefficienty, and ., are the reference pressure and the pressure at the bot-
tomhole, respectivelyl] is the thickness of the uniform horizontal formation; anid the constant volumetric flow

rate.
In addition, the fluxj, in reduced units is defined as follows (Matthews and Russell, 1967):

. oh ,t
Jon(tp) = ﬂbw ) 8)
TD rp=1

where

H .
for constant pressure
2l Ka(lty — hio)” 2 P :

Jop = ) 9
_J2 for constant flux.

)

q
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3. INITIAL AND BOUNDARY CONDITIONS

Assuming that the reservoir has a constant pressure at time zero, the initial conditions are written as
hip(rp,0) = hap(rp,0) =0, 1<7rp <7Tpext (20)
The boundary condition at the bottomhole, when a constant pressure is imposed, is given by
h2p(1,tp) =1, tp > 0. (11)

On the other hand, when a constant flow at the bottomhole is imposed and an influx recharging the reservoir
through the outer boundary is considered, the boundary conditions are as follows:

-1, for rp=1, tp >0,
TDahZDa(TD>tD) _ (12)
T
b f(tp) = —qex(1 — €712/Y), for rp =7pexws tp >0,

wheregex > 0 is the influx factor, ang is a parameter to change the slope of the ramp rate function (del Angel et al.,
2014; Doublet and Blasingame, 1995). Note that= 0 is for a reservoir with zero flux at the outer boundary (van
Everdingen and Hurst, 1949).

A constant pressure at the outer boundary is also considered:

hap(rpext, tp) = 0, tp > 0. (13)

Some combinations of these BCs are shown in Table 1. They comprise the case studies analyzed in this work.

4. INTEGRAL TRANSFORM SOLUTIONS

In this section, using the JLHT and its inversion formulas, solutions of fluid flow in a double-porosity medium [Eq. (3)]
for the initial-boundary conditions in Section 3 are presented. To validate the solutions, comparisons with results from
the Stehfest method are made in Section 5. Details of the calculations can be found in Appendix A. Henceforth, for
simplicity in notation, we omit the subscrifi? of the dimensionless variables previously defined.

Equation (3) in Laplace space is written as

0%hz  10h2
orz  r Or’
(1 — w)sh1 = 7\(}12 — hl),

wshy + (1 — w)shy = 1<r <rex

(14)

TABLE 1: Case studies and their dimensionless boundary conditions used to solve the model by Eq. (3)

Case | Boundary conditions Inner boundary Outer boundary
DD-BCs Dirichlet-Dirichlet th(l,tD) =1 hZD(TDext,tD) =0
. oh t
DN-BCs | Dirichlet-Neumann hop(1,tp) =1 rDM = f(tp)
orp TD=T Dext
- h t
ND-BCs | Neumann-Dirichlet rpw =-1 hop(rpext;tp) =0
BT'D rp=1
oh t oh t
NN-BCs | Neumann-Neumann rDM =-1 TDM = f(tp)
87’D rp=1 a""D TD =T Dext
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and the BCs in Table 1 are summarized as follows:

/};2(17 S) -2

8h2(r s)
or
ha(red,

ahz(r s)
or
s)=0,

r=1

T="ext

Ei(n

s) =

Vivas-Cruz et al.

wheres is the Laplace transform variable denotes the Laplace transformafand

1

—(ext ( -
S

-~

fls) =

FromEq. (14), the Laplace transform of pressure in the fractures obeys the modified Bessel ordinary differential

(15)
S
(17)
= f(s), (18)
i=1,2, (19)
1
th) (20)

equation:
d?hy;  1dh ~
WZZ ;T:—ﬂ(s) hz =0, 1<r<re (21)
where 1 )4
sw(l—w)+
_ 22
n(s) s(l—w)+A s (22)

We use the finite Hankel transform to obtain an analytical solution of our study model, so taking this transform

to Eq. (21) leads to the following expressions in the joint Laplace—Hankel space:

haks,s) = F(ks, ) (Ez(n 5)
Ohs
or

Jo(rk;)|r=

= ]:(kl,s) (

R Jo(rki)|r=1

= kiu h ’ FACA T
F(kis 5) ( 2(r2) re JO(TKi) |req
B 8%2 JO('I"]C )|1 =1
= F(ki, ) ( O e ki T (ki) | e

Jo(rki)|r=1
T=Text JQ(T‘]C) |r:

r= rex!k’ JO(T]C )|7~:

— ha(r, s) 1), for DD-BCs, (23a)

L ha(r,s) 1>’ for DN-BCs, (23b)
1 Ohy

- k— I | >7 for ND-BCs, (23c)
1 Ohy

_IETW r=1>’ for NN-BCs, (23d)

wherez is the finite Hankel transform af (Cinelli, 1965) andF (k;, s) = 2/{n[n(s) + k?]}. After that, we take the
inverse Laplace transform of Eq. (23) and then we use the inverse finite Hankel transform (Cinelli, 1965) to get

k2J3 (kired)ha(ki, t)

ho(r,t) = ;;0 20k — P(kare) Too(ks,r,1), for DD-BCs (24a)
= 7 Z k;‘](l(li Tayziziii;ti)lo,o(ki7r, 1), for DN-BCs (24b)
=5 g;o kazJ(Ok(li T“‘})Z]zi(ﬁ;? Ty o(ki, 1,7), for ND-BCs (24c)
= 7 2 k;ij(lk(lj r“ff]zig(z’:;t’;)zl,o(ki7 1,7), for NN-BCs (24d)
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whereZ,, ., (z,y,2) = Jn(zy)Yn(zz) — Y (2y)J,(x2) andk; are the roots offg o(k;, 1, rext), Z1,0(kis Text, 1),

Ty 0(ki, 1, mext), @ndZy 1(k;, 1, rext) fOr Egs. (24a)—(24d), respectively. Equation (24) is for homogeneous inner BCs,
sinceZo o(ki, 1,7) = 0 anddZy o(k;, 1,7)/0Or = 0 whenr = 1. Therefore, it requires corrections when inhomo-
geneous BCs are considered. In Xi and Yuning (1991) a mathematical procedure is given to help with the correct
application of the formulas of Cinelli (1965) when a hyperbolic differential equation is considered. However, in
this work we choose to follow an alternative procedure, which only works when a long-time asymptotic (station-
ary) solution exists. Below, a discussion and evidences are presented. We propose the following procedure to correct
Eq. (24):

° Regardingﬁg(k:i, t) in Eq. (24), this function is rewritten as follows:
ha(ki,t) = gki, t) + b (ks), (25)

whered(k;) contains the time-independent (stationary) terms. Therejékg, t) is the transient part of the
solution. For more details aboutk;, t) for each BCs case, see Appendix A.

o We write each equation in Eq. (24) as

ha(r,t) = M1 [ 3 gk )| (1) + 7T [ o(k)| (), (26)

where#~1[3" g(k;, )] (r) has the same form as the infinite sum in Eq. (24), consideringithas, ¢) is
replaced byg(k;,t). This step is similar to the procedure in Xi and Yuning (1991), where the solution is
divided in two parts.

e SinceH 1Y d(k;)] (r) is time independent, these terms are the stationary solusigrof the study model
(3), i.e., the solution to the Laplace ordinary differential equation,

10 [ ohp
7“67‘( or >_0’ @7)

with the inhomogeneous BCs in Table 1 at lihit> co. Therefore,
hao(r) = lim ha(r, 1) {Zq) } (28)

In this respect, it is worth noting that: 1) our procedure can be applied because the outer BC allows us to
obtain a stationary solution for DD-BCs, DN-BCs, and ND-BCs cases; and 2) because in specific conditions
there is no solution of Eq. (27) for the NN-BCs case, another alternative procedure to obtain the long-time
solutions can be used. Namely, the long-time solution is obtained by expanding in seriess ab@ytthe
equations in Table 2 and then taking the inverse Laplace transformation of these results, which lead us to the
desired solution. We denoted this solutiorhag, = hy ,(r, t), referring to a quasi-stationary solution.

¢ Inview of the discussion above, the solution of model (3) is

ha(r,t) = ha.s(r) [Zg kl,t} (29)

for DD-BCs, DN-BCs, and ND-BCs cases. Meanwhile, for the NN-BCs case, the solution is
ha(r,t) = ha.q(r,t) + H™ [ngz,t} (30)

Using the previous procedure (for additional details see Appendix A) the exact analytical solutions are
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DD-BCs case
LT > kt,t Ioo ki, 7, 1) J2 (rextki)
h t)=1-— — 31
Z(T? ) log Text 2 o ) Jz(r@(tk ) ) ( )
and
. 1 T = kig(ki, ) Zo.a(ki, 1,1) 2 (rextki)
t) = - = : : 32
20 = ogred 22 JR(ks) — JRlreaks (32)
DN-BCs case
h (7" t) 1 q log( ) + 71'2 i klzg(k“ t)Io’o(ki, r, 1)J12(7'extki) (33)
— . . 7
- 22 JB(ki) — JR(redk:)
and
72 o= k3g(ki, t)To a(Ki, 1 1)Jl(rextk)
t) = - — 9 ! 34
Jo(t) = Gext — ; T200) — (e (34)
ND-BCs case
Text T = §(ki, )T o(ki, 1,7) T3 (rexiks )
ho(r,t) =1 — — : ) 35
2(r,) = log () + 3 Z:; kil J2(ki) — J2(recks)] (39)
NN-BCs case
2 & kl,t Il olki, 1 r)Jl(rextk ) 2 r2
== — 4+t
2 Z (ko) — Plreks) 72 —1\4 "
2 4 2 2
Tot 37“ext — A log(rext) — 215 — 1 2 r log(r)
- log(r) — ) - (36)
12— 1 og(r) 402, — 172 ez T\ 3 T 2 —1
_ rext + 276 — 418a10g(rext) — 3 i 2ygen(1—e7'/Y)
4(rgq — 1) rae — 1 .

5. ANALYSIS OF THE SOLUTIONS

The analytic solutions of Eq. (3) are numerically validated. With this aim, numerical results are obtained by means of
the Stehfest (1970) method, which is used to take the inverse Laplace transform of equations in Table 2. These results
are compared with the results from the following relationships: 1) Eq. (24) or Cinelli solutions and 2) Egs. (31)—(36)

or Cinelli solutions with closed relationships at large time. An analysis of the existence of long-term solutions is also
presented.

5.1 Validation of the Analytic Solutions Using Stehfest Method

Figure 2 shows the matching between the results from analytic solutions, Egs. (32), (34), (35), and (36), and the
results from the inversion of Egs. (38), (40), (41), and (43), respectively. Values of the parameters are given inside
the frames of the figure. Figures 2(a) and 2(b) have graphs of flux into the wellbore, while Figs. 2(c) and 2(d) have
graphs of drawdown pressure at the bottomhole. They exhibit the different flow regimes, which for Figs. 2(a) and
2(b) are related to fractures, transition fractures-matrix, and matrix, and they are presented at early, middle, and long
times, respectively (Warren and Root, 1963). On the other hand, Figs. 2(b) and 2(d), in addition, involve a stage
dominated by recharge boundary effects, which are presented for a long-time production (del Angel et al., 2014;
Doublet and Blasingame, 1995; Wang et al., 2017). Therefore, these latter figures include graphs with a transition
stage between homogeneous behavior and influx recharge. Note that the transition stages between media with different
permeabilities occur around the inflection points (Uldrich and Ershaghi, 1979). In Fig. 2(b), we note that the stage
dominated by the transition fracture-matrix is dimmed because the influx recharge effects arise close to this transition
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TABLE 2: Exact solutions in Laplace space of the fluid flow equation [Eq. (3)] and their different BCs cases

Case Pressuré Flux*
5D.BC ol 5) = Yoo (Text, T, 11(8)> 37 | us) = VN(s)%o,1 (T'am 1, \/ﬂ(s)) 38)
7 sUo 0 (r@(t, 1, \/n(s)) sUo 0 (1,rext, n(s))
ongC | T = 0 (rexs 7, v/n(5)) gy 2 Y (Lren VA5))
- r,s) = s) =
’ sWo 1 (177’ext7 11(5)) & sWo1 (1, 7ext, H(S))
i T (L.7.vn()) ay| T Yoa(l V() 0
Text \/T](S)‘Ilo,l <1a7"ext» \/H(S)) Text Wo 1 (1a7"ext, n(S))
ND-BC | fip(r, s) — ¥oo (. ren V1) (41) To(s) = * (42)
sy/n(s)Po.1 (rext, 1, «/n(s)) §
NN-BC | Fiafr. ) Vo1 (7", Texts TI(S)) L
- r,8) = -~
T sV (Lres vAE)) als) = 5 (44
7(s) Vo1 (T, 1, \/ﬂ(s))
+ (43)
ret ()W (L ren VA5 )

TProblemstatement is given in Eq. (21) with the BCs (15)—(19).
Wi (0,7, 2) = Ky (P2) I (Yx) 4+ (=1L (92) K (Y) andn(s) = {[sw(l— w) +A]s}/[s(1— w) + A].

(a) 5 [y (D) o T
0sk N\ =10 ] SN U):O.I}J&S i
- \ A=10 -1 N A=10
\ r,,~100 | \\- r, =100
.\ \
\ Result from exact solution \ Result from exact solution
\ —-—— Result from Stehfest method IF \ —-—— Result from Stehfest method
S \ E \
__:l \_ ._:l \
\ \
N, \
\\ .\
——— - 0.5¢ \ e .
~ N /
- ~ ~,
0.25F S - \\. /,
\\‘_ \""-...___._ ‘,"
Ll I I | I sl | I LRS! I I I R B v vl
o' " et w1t ot 1w T R ) R T L ' ) M) N T M TR T
Tt t

FIG. 2.
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1 1 1 1 1 1 1 1 1] ' 1 1 1 T 1 1
(©) e ] 10°F (d) /3
.... ] 3 =0.1288 7
e 1 1 A=10"" /
’ w=0.1288 1 10F r_=100
3 ] : ext /
7 A=10 ] F /
/ L. =100 i 2L Result from exact solution 4 i
> 10 . — —~ Result from Stehfest method /

(5]
T
Y

Result from exact solution E 10F e ¥
/ —-—- Result from Stehfest method ] F e E

FIG. 2: A comparison between the exact solutions from JLHT and numerical solutions from the Stehfest method is shown. A
matching is observed between both results. Equations (32), (34), (35), and (36) are used to obtain the results in the subfigures
for the cases (a) DD-BCs, (b) DN-BCs, (c) ND-BCs, and (d) NN-BCs, respectively, while the results from the inverse Laplace
transform are obtained by making use of Egs. (38), (40), (41), and (43). The parameter values used for the ramp rate function are
gext = 0.5 andy = 1073, In (a), (b), (c), and (d) 100, 100, 1000, and 200 are usemots, respectively.

stage. In summary, the expected physical behavior of a slightly compressible fluid in a double-porosity medium is
observed, as well as a perfect matching, to the naked eye, between the numerical and theoretical results. It is worth
mentioning that a similar conclusion is obtained for other parameter choices.

5.2 Convergence of the Cinelli and Analytical Solutions

In addition to validating the analytical solutions, they are reduced to classical solutions reported in the literature:
Muskat (1934), for DD-BCs; Hurst (1934) and Muskat (1934), for DN-BCs; Matthews and Russell (1967), for
ND-BCs; and del Angel et al. (2014); Matthews and Russell (1967); Muskat (1934), for NN-BCs. Based on this
observation and the numerical validation of the previous section, we assume that Egs. (31)—(36) are correct. For
the convergence analysis, we consider that the results of Eq. (31) are exact when the truncation intébress10
rounding results to six decimal place accuracy (this precision is established in such a way that the floating numerical
result would not change when new terms are added to the solution in infinite series). The error behavior in function
of the number of terms can be seen in Fig. 3(a), which exhibits errors with less than five orders of magnitude. Similar
results should be found for the other study cases (nhot shown in the figure) as well as fornvatles. Therefore, for

practical purposes, the results in Fig. 3(a) suggest that a truncation with 100 terms can be used to get a good accuracy.
In general, for Egs. (31)—(36), this number of terms is suitable for obtaining reliable results for applications. Likewise,
the error associated with the Stehfest method is computed, as can be seen in Fig. 3(b). This latter error has amplitudes
and oscillations greater than the error from Eq. (31), and in fact, it is important to mention that there is no control
over the error obtained with the Stehfest method.

A related point to consider is the convergence analysis of Eq. (24), whose behaviors can be seen in Fig. 4. In this
figure it is remarkable the systematic convergence of the results by truncating the series in Eq. (24) with a greater
number of terms. Also, notice that the results tend to zero at the inner boundary and that their convergence is very
slow close to this boundary. In addition, note that the oscillations are increased by increasing the number of terms,
as can be seen in Figs. 4(a) and 4(b). There are techniques to speed up the convergence rate (Shanks, 1955), but we
show that the solutions with the closed formulas also speed up the convergence, as indicated by the running times
given in Table 3 (the computational cost to make an inversion with the Stehfest method is also included). Figures 4(a)
and 4(b) contain graphs of the DD-BCs and DN-BCs cases wh&rlf) and 16 terms or roots are considered in
the computations. Despite the great increase in the number of roots, the results have considerable oscillations around
the numerical results. Note that these latter numerical results match with the ones from Egs. (31) and (33) and are
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FIG. 4: Results of the exact pressure (dui(r, t) formulas) for the cases: (a) DD-BCs, (b) DN-BCs, (c) ND-BCs, and (d) NN-

BCs, and exact fluyz(r, t) for the cases (e) ND-BCs, and (f) NN-BCs. These results are compared with the corresponding ones
obtained with Eqgs. (24) and with the Stehfest method applied to the equations of Table 2. It is remarkable how the results from
Egs. (24), except for subfigures (c) and (d), show a slow converge and oscillations around the exact results, and also that the inner
boundary condition is not hold in any case. For (c) and (d), the oscillatory behavior is diminished and the convergence is faster
than in the other subfigures; note that in these cases the inner boundaries have flux conditions which never are meet. In all cases is
observed a perfect matching between the exact solutions and the Stehfest method results.

TABLE 3: Computational co$t(in seconds) to obtain a results/fof(r, t)

Case Cinelli (10 roots) This work (102 roots) Stehfest
DD-BCs 1.40 0.0001 4.8x10°°
DN-BCs 0.90 0.0086 8.8x10°°
ND-BCs 0.01 0.0001 5.2x10°°
NN-BCs 0.04 0.0003 4.4x10°°

$Runningtime scales linearly with the number of terms used to compute the resuilt.

free of oscillations. On the other hand, Figs. 4(c) and 4(d) contain graphs for ND-BCs and NN-BCs cases. Again, we
observed a systematic convergence by increasing the number of terms. In fact, for ND-BCs and NN-BCs cases, the
oscillation quickly diminishes when more terms of the series are considered in the computation. Even so, the number
of terms is large compared to the number of terms used in the computation by means of equations that involve the
closed formulas, Egs. (35) and (36). For example, in Fig. 2 hundreds of terms are used, while in Fig. 4 thousands.
However, the behavior like the one given for Figs. 4(a) and 4(b) is found when flux along the reservoir (at fixed
time) is plotted, see Figs. 4(e) and 4(f). This is because these graphs show the convergence of the solution toward the
value of the inner BC. It is worth remarking that results in Fig. 4 are computed either with the solutions of Cinelli

or the exact ones, and that both have infinite sums. Therefore, the absence of oscillations in the exact solutions is
due to the fact that the infinite sums (corresponding to the stationary limit) could be approximated with simplified
analytical expressions, i.e., the oscillations are attributable to computations with a finite number of terms of the time-
independent series. In summary, it is remarkable that: 1) direct use of Eq. (24) leads to the correct results, except at
the inner boundary, and 2) when the closed formulas are used, the inhomogeneous BCs hold independently of the
number of terms.

5.3 Existence of Stationary Solutions
As we have highlighted, the solution of

19
ror

(r 8gi’s> =0, whichis hy(r)= Alog(r)+ B, (45)

Journal of Porous Media



Solutionsand Type Curves of a Fluid Flow Model 1027

is involved in Eq. (29), and this is stationary. For this reason, the solution of model (3) is represented as the sum of a
stationary solution and a transitory solution. This latter solution has the same form as the Cinelli formulas, replacing
Bz(ki,t) in Eq. (24) byg(k;,t). Therefore, the transitory part holds by default for homogeneous BC, and, for this
reason, the stationary pdri () should reproduce the inner BC.

Because of the nonuniqueness condition required for a well-posed boundary value problem, Eq. (45) has no
stationary solution when a fixed flow is imposed at the inner boundary with an influx through the outer boundary.
Solution methods can lead to uniqueness by specifying a conservation principle or splitting the problem into well-
posed problems [see, for example, exercises 18.3.10 (c) and 18.3.19 in Greenberg (1998)]. Regarding this remark,
stationary solutions arise when the inner and outer boundary conditions are equal, i.e4 thdethe same value in
both boundaries. Thus, the flux has a long-time stationary behavior because no net flow enters or leaves the reservoir.
Under these conditions, we have validated that our methodology, in relation with Eq. (29), works well. Otherwise,
when the net flux in the reservoir increases or decreases at any time, a dynamic behavior predominates over time. In
this case, we have observed that the formula in Cinelli (1965) for NN-BCs is limited to work well when no net flux
leaves or enters the reservoir, while inconsistencies are observed when the influx recharge has a predominant effect in
the system at large times. In fact, the flattened line in Fig. 5 exhibits such inconsistency, since the results given by this
formula remain constant for long time, for any valueggf; chosen. This behavior disagrees with the one obtained
using the Stehfest method, in which there is an increase in the asymptotic behaviorgwhkerl and a decrease
whengey > 1. These characteristics are consistent with those observed in van Everdingen and Hurst (1949) and del
Angel et al. (2014) and, as we can see in Fig. 5, they are reproduced by our exact solution, Eq. (36), which is valid
for any value ofgex considered. Notice that some flow problems with NN-BCs have been successfully solved with
the Weber transform (Babak and Azaiez, 2014; Tong and Hu, 2010; Zhang and Tong, 2007).

Itis worth mentioning that we have deliberately added the time-dependent terms on the right-hand side of Eq. (36)
to obtain the correct behavior; these terms are identified by being outside of the infinite series indicated there. As it
was stated in Section 4, these added terms are obtained by expanding Eq. (43)-aliy@nd, subsequently, taking
the inverse Laplace transform to the result of this expansion. It can be seen that these terms are not considered in the
Cinelli relationships, Eq. (24d), and their inclusion leads to a correct matching with the numerical results, as can be
seen in Fig. 5. Similarly, it can be proved that stationary solutions for DD-BCs, DN-BCs, and ND-BCs cases can be
recovered using this procedure.
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FIG. 5: Drawdown pressure curves for the NN-BCs case. The flattened line is the result from the Cinelli formula [Eq. (24d)], and
the dashed lines are obtained using the exact result given by Eq. (36). For comparison, the inverted numerical results from Eq. (43)
are also shown in dashed lines. In all cases B terms are used. The consideredalue is 10°3.
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6. CHARACTERISTIC BEHAVIOR OF RESERVOIRS WITH INFLUX RECHARGE

In this section, characteristic curves of drawdown pressure and flux for reservoirs with influx recharge are presented.
Drawdown pressure curves are analyzed in the framework of the pressure derivative of Bourdet (Bourdet et al., 1983,
1989). Subsequently, a comparative analysis between models with NN-BCs is done, considering a model of a single-
porosity and nonzero influx and a second model of double-porosity but with a closed boundary. This analysis is done
with the purpose of elucidating whether they can be quantitatively equivalent.

It is worth mentioning, before beginning the analysis, that for naturally fractured reservoirs, usual values of the
interporosity flow coefficient are T3° < A < 10~4, while the fracture storage coefficiemtis in the order of 103
or 1072 Bourdet (2002). Regarding the work of Kuhiman et al. (2015), we havg 0.1%. The parametejy; (or
v) has not been characterized because of the scarcity of studies in this direction. On the other hand, according to the
Warren and Root model, the parameter values admit the following rangesy G< 1, A > 0, gext > 0, andy > 0. In
a similar way to other works (Mavor and Cinco-Ley, 1979; Wang et al., 2017), we use these latter ranges to show the
characteristic behavior of the study model. Indeed, best-fitting curves of the Warren and Root model could lead to a
large value otw, e.g., Camacho Velazquez et al. (2014).

6.1 Characteristic Curves
6.1.1 DN-BCs Case

Taking into account that the condition imposed at the bottomhole is constant pressure, Eq. (34) leads to the flux
behaviors shown in Fig. 6. Therein, the differences between the graphs come from varying the values of the storage
w, the interporosity flux coefficient, the slope of the ramy, the outer influx factorey;, and the outer radiugys.

Note that the interporosity flow coefficient is a first-order mass transfer coefficient Goltz and Oxley (1991); Moench
(1995). In Fig. 6(a) it is evident that at early times,has a major effect on the flux. Namely, a smalleads to a
transition fracture-matrix more pronounced, while the graphufor 0.9 does not show the characteristic form of

such transition. Figure 6(a) also exhibits that, for fixedthis form is affected by changing thevalue. Thex effect

in the flux can also be seen in Fig. 6(b); for> 101, transitions with a negative half-slope are observed, while the
graphs for the rest of the values®fre similar to the ones from a single-porosity medium. On the other hand, since

v is an influx parameter, its effect is seen in Fig. 6(c) for a long time production. Because g liangées a slow

influx recharge into the reservoir, the flux declination is more pronounced whenvéiee is increased. In addition,

the effect ofrex becomes clear in Fig. 6(d). Namely, the characteristic curves show that aslggdeads to a greater

flux drop. In this figure, we give three graphs for each value.gf each of these depending on a couple of values

of gext andw as indicated there. Notice that the flux drop is recovered at long time when the flux becomes stationary
with a ¢ex; Value; it can be seen for every graph in Fig. 6. We do not include solutions for a closed reggqveil:

however, for this case the flux tends to zero, and the solutions have no minimums as show in Fig. 6.

6.1.2 NN-BCs Case

Examples of drawdown pressures and their Bourdet derivatives are found in Fig. 7. We can see how changes in
have effect for early time; the effect by varyidgcovers the solution domain, while changes dug tare presented

for long time; see Figs. 7(a)—7(c), respectively. Similar characteristic behaviors have been observed in other works
(del Angel et al., 2014; Wang et al., 2017); however, these works were not for double-porosity media. The drawdown
pressure shows several stages as time evolves, which are influenced by fractures, transition fractures-matrix, matrix,
transition matrix-influx, and influx. Furthermore, the Bourdet derivatives have minimums in correspondence with the
transition stages. It can be noticed in Fig. 7 that both characteristic curves have the same linear behavior at long times
when log-log graphs are considered, with a slope value of 1. However, note that this fact leads to an extension of the
range of the matrix stage wharis very small, as can be seen for= 10~7 in Fig. 7(b). A similar situation occurs in

Fig. 7(c), wherey = 10° implies a longer time for the recharge to take effect. In addition, the effegidfecomes

clear in Fig. 7(d). Namely, the characteristic curves show that for ahiglndt, the drawdown behaviors are that

of the Warren and Root model. In this figure, we give a set of graphs for each valyganfd different values ofex;
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FIG. 7: Drawdown pressure characteristic curves, Eq. (36), and their Bourdet derivatives for the NN-BCs case. The frames show
the effect of the following parameters on the curvesufa@ndA, (b) A, (c)y, and (d)rext andgext. The rest of the parameter values,

in addition to the ones given in frames, are: g} = 0.8 andy = 1073, (b) w = 0.3, gext = 0.6, andy = 1072, (c) w = 0.3,

gext = 0.5, andA = 0.1, and (d)w = 0.001,A = 1077, andy = 1073

each of these sets is indicated by different types of line. Notice also that the drawdown behavior is that of a closed
reservoir, except whern,; — oo, i.e., the behavior at long time of a closed reservoigsr= 0, is similar to that of
a reservoir with influx recharge when< gex < 1.

As mentioned above, the drawdown pressure and its Bourdet derivative have the same asymptotic curve at long
times. Indeed, this is obtained from Eq. (36) and its derivative,

Oh; 2 2 Gext
t— = -5 — t = hp. 46
ot <7"<29<t 7"(2»<t - 1) ? (46)

In the previous result, we use the fact that the transitory part of the solution tends to zero when time increases,
as we deduced before in the discussion of Fig. 5. The influence of the parameterpressure drawdown curves is
analyzed in del Angel et al. (2014) and Wang et al. (2017), where a single-porosity and triple-porosity reservoir are
studied, respectively. In these works it is observed that the influx recharge has no influence on the early and middle
production stages. Furthermore, the following points are remarkable: 1) yuhen 1 it impliesdhy/0t = 0, i.e.,
there is a stationary solution with a constant pressure at the outer boundary; 2)wked there is a pseudo-steady-
state solution, and the influence @f; is similar to the case when there is a closed boundary; and 3) when 1
the pressure of the reservoir increases, while the bottomhole pressure decreases with a negative slope.

6.2 Similarities between Models with and without Influx Recharge

In this section, we indicate a criteria to know when a drawdown curve is related to a reservoir with or without influx
recharge. The analysis presented is necessary because del Angel et al. (2014) and Doublet and Blasingame (1995)
mention that there is a similarity between a model of fluid flow in a single-porosity medium with influx recharge
(1 — 1k — gext # 0) and a model of fluid flow in a closed double-porosity medium 2dk — gext = 0). However,

a detailed analysis using the Bourdet derivative is not carried out in these works in order to elucidate this statement,
which is based on the fact that both models have characteristic curves with a minimum from a transition stage.
Indeed, in this regard, note that in Wang et al. (2017) are shown curves of-al3d— gext # 0 model that have

a triple minimum in its drawdown derivative, i.e., those curves may have equivalence with the curves of a fluid
flow in a closed quad-porosity medium. The discussion may also occur because despite the conceptual differences
of the models being compared, their drawdown graphs are matched, as can be seen in Figs. 8(a) and 8(b). Therein,
we compared the results from the following models: (a) £¢lk — gext # O VS 20 — 1k — gext = 0 and (b)
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FIG. 8: Comparison of the drawdown pressure and its Bourdet derivative of the following models: (@)1k$- gext # 0 VS

20— 1k—qgext = 0and (b) 2 — 1k — gext # 0 vS 3p — 1k — gext = O (this triple-porosity model considers the differential equations
(1)—(3) in Wu et al. (2007) together with the NN-BCs given in this work). As we can see in each frame, the difference between
the drawdown curves are difficult to distinguish one of another. However, their Bourdet derivative show a clear difference in the
transition period toward the outer boundary flow regime, i.e., in this transition period there is a minimum that depgerd$um

graph of the triple-porosity model is obtained with, = 0.05,w; = 0.4, Ay, = 0.005,Af,, = 0.5474, and\,,,, = 0.1643 ¢,

f, andm are for vuggs, fractures, and matrix, respectively), while the graph of the double porosity model with influx recharge is
obtained withw = 0.4 andA = 0.5.

20 — 1k — gext # 0Vs 3b — 1k — ¢ext = 0. However, in the same figure it is seen that the Bourdet derivative
exhibits a clear difference in the transition period toward the outer boundary flow regime (stage with a unit slope
at long times). Even so, the question remains whether it is possible to obtain equivalent curves from the results of
1b — 1k — gext # 0 and 2¢p— 1k — gext = O Models.

In order to elucidate the differences between-1dk — gext # 0 and 2d— 1k — gext = 0 models, a comparison
between both is shown in Fig. 9. This figure contains a characteristic drawdown curve (and/or its Bourdet derivative)
of the 1d— 1k — gext # 0 model (see solid-black lines) in order to mark the differences with curves of thelig-
gext = 0 model. Figure 9(a) shows drawdown curves with a monotonously increasing behavior, while the drawdown
derivative has a minimum that increases its depth when the valyg:dhcreases (0< gext < 1). In addition, a
nonzero influx recharge leads to obtaining a minimum located just before the stage dominated by the outer boundary
effect. The 2¢- 1k — gext = 0 model also presents this latter stage, but its minimum, between the fractures and matrix
flow regimes, is not necessarily located just before the beginning of the stage with a unit slope. This is exhibited in
Figs. 9(b) and 9(c), in which the systematic effect of the paramatarsd w on drawdown derivatives is observed
for this model. In both frames there are derivative curves with two minimums, i.e., these curves cannot be equivalent
with the results in Fig. 9(a), which clearly has a minimum. The rest of the curves in Fig. 9(b) show behaviors which
are dominated by the transition period between fractures and matrix flow regimes, which are present at short times
whenw = 0.05 and at long times whew = 0.3, see dashed-point and solid lines, respectively. Noticeably, these
latter curves are very different from the ones in Fig. 9(a). Meanwhile, in Fig. 8(d}, varied for the purpose of
obtaining a curve with a single minimum and with the restriction that the transition period, between the fractures and
matrix flow regimes, remains just at the beginning of the stage with a unit slope. As we can see, we can not eliminate
one of the minimums by varying. For this reason, we solved a least-square minimization, where the results of the
1¢d — 1k — gext # 0 model are taken as the input data, and the parametrized modeHs R gex: = O. In this way,
the curve-fitting problem leads to a valuewf= 1, i.e., the best fit is a curve of the ¢lk — gexi = O model [see red
line with circles in Fig. 9(d)]. In addition, we realize another fit by considering the results of the lh— gex: # 0
model as input data, which only are taken from the minimum and the stage with unit slope. The best-fitting curve
reproduces the input data, but outside of the fitting interval the curve has another minimum, and at short times it is
very different from the results of the 1¢ 1k — gexx = 0 model [see blue line with cross symbols in Fig. 9(d)]. The
rest of the curves in Fig. 9(d) are given in order to show the behavior by vanyjrilgey have two minimums.
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FIG. 9: In (a) are presented graphs of thé + 1k — ¢gext # 0 model. The solid-black line remains as reference in (b), (c), and
(d). The frames (b) and (c) show graphs of the drawdown derivative ofdthe 2k — gexx = 0 model in order to exhibit the curve
behaviors and their similarities with the curve of thp 4 1k — gext # 0 model. In (d) it is shown that the best-fitting curve of the

2¢ — 1k — gext = 0 model (red line with circle symbol) is a curve of thé + 1k — gext = 0 model, sincev = 1 is the result from
the fitting.

Therefore, according to our analysis, it is impossible to obtain a quantitative equivalence between results of the
1 — 1k — gext # 0 and 2¢— 1k — gext = 0 models. We know that for the 1¢ 1k — gext # 0 model, the only
transition period is located at the beginning of the stage with unit slope. This stage has or does not have a minimum
when there is or there is not an influx recharge, respectively. On the other hand, when there is a transition period
that is not located at the beginning of the stage with unit slope, the porous medium is double-porosity, keeping out
the possibility of quantitative equivalence with the fdlk — gext # 0 model. However, note that when the only
transition period is located at the beginning of the stage with unit slope, but the transition has two minimums, the
reservoir has associated a double-porosity medium without influx recharge. This latter statement can be used as a
criterion to distinguish real-life data from a double-porosity reservoir with closed boundary. By contrast, we remark
that a single-porosity reservoir with influx recharge has a minimum at the beginning of the stage with unit slope.

It is worth mentioning that for simplicity we compare the t¢lk — gext # 0 and 2¢d— 1k — gext = 0 models,

on the understanding that similar conclusions must be obtained for other models, e-g.12& gext # 0 VS
3¢p — 1k — gext = 0.
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7. CONCLUSIONS

Using the joint Laplace—Hankel transform, we solved a fluid flow problem of interest in petroleum engineering and
groundwater science. Our model describes the flow of a slightly compressible fluid in a double-porosity finite reservoir
with Dirichlet—Dirichlet, Dirichlet—-Neumann, Neumann-Dirichlet, and Neumann—Neumann boundary conditions.
With this aim, the solution is divided into a stationary and a transient part. We validate the exact solution using the
Stehfest method. In addition, whem= 1 andA = 0, our formulas are reduced to those derived by other authors who
have solved the equivalent problem for a single-porosity model (del Angel et al., 2014).

We find that the Cinelli formula [Eq. (24d)], related to NN-BCs, is incomplete because it does not include
time-dependent terms, which impose the solution behavior at long time. For this reason, the results of Eq. (24d)
are stationary always. The exact solution, in the limit of larges found by means of a series expansion in the
Laplace space: thus, we identify the terms ignored by Eq. (24d), which are included in Eq. (36). On the other hand,
regarding the DD-BCs, DN-BCs, and ND-BCs cases, we observed a correct convergence of solutions [Egs. (24a)—
(24c¢)] along the domain of the solution, except in the inner boundary where a zero value is obtained. Furthermore,
these solutions are oscillatory and slowly converging. We found that the inhomogeneous BCs are reproduced using
the closed formulas derived in this work. In addition, these simplified formulas speed up the convergence of the
solutions, compared to a direct use of the Cinelli relationships [Eq. (24)].

Finally, the characteristic behaviors of solutions (31), (33), (35), and (36) exhibit the different stages of flow
at bottomhole: fracture-dominated, transitions-dominated, matrix-dominated, or recharge-dominated. The Bournet
derivative, for the NN-BCs case, shows a minimum during the transition periods between the fractures and matrix
flow regimes and the flow regime dominated by the influx recharge. This information can be used to give a criterion
about whether the reservoir has recharge at the outer boundary at the same time that we can know the number of
porosities associated with it. An extension of this work could include-22x models, as given by Lu et al. (2019b).
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APPENDIX A. EXACT SOLUTIONS

In this Appendix, we present additional details of the procedure developed in this work to solve the partial differential
equation of the studied model.
The finite Hankel transform of a well-behaved functigfr) is expressed as follows (Cinelli, 1965):

b
h(k;) = H[h(r)] = / rh(r)K(r, k;,a)dr, (A1)

whereK (r, k;, a) is a kernel that depends on the inner BC:
K(r ki a) = Jo(kir)Yo(kia) — Jo(kia)Yo(kir), for DD and DN-BCs (A.2a)
= Ji(kia)Yo(kir) — Jo(kir)Ya(kia), for ND and NN-BCs (A.2b)

There is also an equivalent kernel that depends only on the outer boundary. Using the previous definition, the
finite Hankel transform of the Laplacian is given by (Cinelli, 1965):

@h  1dh] 2 Jo(ka) 2 -
H [drz Tdr] =7 Tolkan) ) — i) = kih(k:), for DD-BCs, (A.33)
_ 2 Jo(k‘ia) ’ 2 27 A
=k (k) O T @)~ kh(k), for DN-BCs, (A.3b)
o 2 ’ 2J1(k:ia) 27 )
=T a) WJO(kib)h(b) kZh(k;), for ND-BCs, (A.3c)
_ 2h(kia) 2 1(a) = K2R(ky), for NN-BCs. (A.3d)

!
=7 (b)) —
W]{}ZJ]_(kzb) ( ) 7Tk‘i
whereh’(a) is the derivative of.(r) evaluated i = a. These latter expressions are used to obtain the inverse finite
Hankel transform given in Eq. (24).
A.1 Finite Reservoir with Dirichlet-Dirichlet Boundary Conditions

Using the JLHT to obtain the solution of a fluid flow in a finite reservoir with constant pressure in both boundaries is
very simple. From Eq. (23a) and Egs. (15) and (17), we get

ok, s) = f%]-"(ki, 5), (A4)
where 5
Flhs) = s (A.5)

n(s) where is defined in Eq. (22).
Taking the inverse Laplace transform of Eq. (A.4) leads to the following expression in Hankel space:

Falkit) = ——2 + (k). (A6)

ke

?
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where
Gk, t) = % |:(V + 0) exp {—az—tl)t} + (v —po)exp {— EZ:th} ] , (A.7)
and
Y= w(w - 1);

E=-A+k(w-1),
0 =A+k(w—1),

v = /&2 + 4K2\.

Becausethe term—2/7k? is not related to time, its finite inverse Hankel transform is the stationary solution
of model (3). Therefore, we replace the inversion-&/mk? with the stationary solution of the Laplace equation,
V2h, = 0, in cylindrical coordinates. Namely, the following equality holds true:

(A.8)

log(r) o~ To,0(ki, 7, 1) JE (Texiks)
- = -7 ’ . A.9
log(7ext) Z J&(ki) — JE(rexdki) (A-9)

i=1
Substituting Eq. (A.6) into Eq. (24) for the DD-BCs case, and simplifying with the previous closed formula, the
exact solution is

7T > kl,t Io o(ks,r, l)JO(rextk: )
ha(r,t) = = , A.10
2( ) log Text 2 Z ) Jg(’/‘ex[kz) ( )
where thek; are the positive roots & o(k;, 1, Text) = 0.
The flux is obtained by substituting Eq. (31) into Eq. (8). This is accomplished as follows:
. 1 T o= kig(ki, £)Zo1(ki, 1,1) J3 (rexiks)
t) = - = : . All
T2 = oglren) ~ 2 ot J2(ki) — J2(recks) (A-11)

Equations (31) and (32) recover the formulas in Muskat (1934) when the limit of single-porosity medium is
taken.

A.2 Finite Reservoir with Dirichlet-Neumann Boundary Conditions

Fluid flow in a reservoir with constant pressure at the bottomhole and influx recliéifgat the outer boundary is
considered. The influx functiofi(¢) is given in Eq. (12). Substituting Eqgs. (15) and (18) into Eq. (23b) leads to the
following formula:

> letJO(ki) 1 1)
ol o) = =5 ) Fkis). A.12
2{fi,) (”'mkiJl(Textki) (ys2+s) s (ki, 5) (A.12)
Taking the inverse Laplace transform of Eq. (A.12), we obtain
2 Gext Jo(kii) .
halkit o i) L kist), Al
( ) sz |:Te<t kijl(’l"extk‘i) + g( ) ( 3)
where
P QGXtJO(ki) (t_,+'V 5 E'+‘V 1
ki t) = _ pYr N 1 1,
g( ) Wk?'f'extjl(rextki)ﬁ'\/ xp 211) Y(Y +w ) exp 21]) Y
b+ A) <eXP {lvpt} + 1) )V + (AY(& — 2kAp) — o) <exp {vat} - 1> } (A.14)

“amer S (e (i -2) e (e i +2) )
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andé¢, 1, o, andv are given in Eq. (A.8). In addition, we have
9 =vE— U+ kX2 (A.15)

Similar to DD-BCs case, Eg. (A.13) has terms not related to time, whose inverse finite Hankel transform is the
stationary solution of model (3). Therefore, this inverse is equal to the solution of the Laplace equation with DN-BCs

Gext 1o O(kia T, 1)Jf(7"extki)
1 — gogl - —1) 2 . A.16
Genlog(r) =7 Z (e Tl rextk $ =) e et (A-16)

Substituting Eq. (A.13) into Eq. (24b), and simplifying with the closed formula (A.16), the exact solution is

- g 17 IOO k“'r' 1)J1(7"extk)

’/T
ha(r,t) = 1 — gextl — A.17
(T ) Qext Og 2 Z ) Jl (T@(tkj ) 9 ( )
where thek; are the positive roots df; o(k;, 7ext; 1) = 0.
In addition, from Egs. (8) and (33), the flux at the bottomhole can be written as
72 kt,t Toa(ki, 1, 1)J2(rextk)
— L A.18
J = Qext — 2 Z o (k) — Jl (rexths) ( )

Equations (33) and (34) recover the formulas in Muskat (1934) and Hurst (1934) when the limit of single-porosity
is taken.

A.3 Finite Reservoir with Neumann-Dirichlet Boundary Conditions

Assuming a constant terminal rate at the bottomhole and constant pressure at the outer boundary of a finite reservoir,
the pressure is found; i.e., the ND-BCs case is solved. Substituting Egs. (16) and (17) in Eq. (23c), we obtain

1

ha(ki, s) = P~

(kiy 9). (A.19)
Taking the inverse Laplace transform of Eq. (A.19) leads to

ha(kiyt) = + g(ki, t), (A.20)

2
k3
where
E+v

il = 0= { 55t - o vem {550 | (A21)

From the inverse of terms not related to time in Eq. (A.20) and from the time-independent solution of the
model (3), we have

Text = I O(ki7 1;T>J§(Textki)
1 =) = ’ . A.22
°8 ( r ) ”; ki T2 (ki) — J2(reaks)] (A-22)

Placing Eq. (A.20) in Eqg. (24c), and using Eq. (A.22), the exact solution is given by

- Text g kz,f Ij_o k‘L,l T‘)J (rextk)
ralr ) = 1og () + ZZ (k) lreaks) #22)

where thek; are the positive roots & o(k;, 1, rext) = O.
Equation (35) recovers the formulas in Matthews and Russell (1967) when the limit of single-porosity is taken.
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A.4 Finite Reservoir with Neumann-Neumann Boundary Conditions

The pressure of a fluid in a double-porosity reservoir with constant terminal rate and influx re¢fargethe outer
boundary is given. Replacing Egs. (16) and (18) in Eq. (23d), we obtain:

= _ Fkiss) J1(ki)F (ki, s)
hz(ku 3) - kis Qext T@(tki (,YSZ + S)Jl(rextki) ) (A24)
= EZ,nf + le,f-

The no-flow ternﬁz,nf has the following inverse Laplace transform:
- 2 ~
hant(ki,t) = —= + g(ki, t), (A.25)
k;
whereg(k;, t) is equal to the expression in Eg. (A.21), with the difference that the valugsofmes from the positive
roots ofZy 1(k;, 1, rext).

The second term in the right hand side (RHS) of Eq. (A.24) is an influx term, whose inverse Laplace transform
is found using the convolution theorem. This inverse can be written as

P = —2G(ky) (£*1 {f(s)} « Lt {a(k s)}),

Text
Gk (! .
=98 [ (e oyt Qe (A.26)
= *?Q(lﬁ) [Ql(ki,t) - Qz(ki,t)},
ext

in which we use the following inverse Laplace transform:

Wk, ) = 2iv exp {—E‘;pvt} [ (1— exp {:{)t}) (& +2wA) + <1+ exp {:{)t}) v]. (A.27)

In previous equations, we have

~ 2J1(k;)
ki) = —
g( ) Wkir]l(rextki)
~ 1
u ki7 = N 72
Wk 8) = T R

Q1(kit) = /Otﬂ(k,», Q)d¢
st e e o5 i)

t
Qa(k; t) = / e (=Y q(ky, 0)d
0

Y@= oy [AEY Ay gy (EPIA-Y) Ay
v B—2b C—2¢ C+ 29 B—2v)|

whereé, v, andip are given in Eq. (A.8)A = &+ 2wA, B = (v+ &)y, andC = (v — &)y.
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Therefore, the inverse Laplace transform of Eq. (A.24) is the sum of Egs. (A.25) and (A.26):
iLZ(kh t) = BZ,nf + BZ,f- (A29)

Since in the NN-BCs case the Laplace equation has no solution, the asymptotic solution for long time is found
by means of a series expansion of the solution in Laplace space, i.e., the expansion of Eq. (48)-al@o{Rrats,
1986; van Everdingen and Hurst, 1949) is developed. Thus, the behavior for long time of the no-flow term was given
by van Everdingen and Hurst (1949):

2 72 r2 3rd — 4rd Jog(rex) — 215, — 1
R o 1) = o _ ext 1 _ Plext — Tlext ext ext A.30
2,n i(r,t) Tgxt 1 ( 4 + ) Tgxt 1 og(r) 4(rgxt — 1)2 ) ( )
while the influx term was found by del Angel et al. (2014):
2 2 1 4t 212, — 4rd,l -3] 2 1—et/y
has(r,t) = Qext[ (r + t) S 8(r) _ Teat 2rea— 4re Ozg(re“) + yqex‘(z ) (a3
aa— 1\ 4 Tee — 1 4(7“62»« -1) Text —

Equations (A.30) and (A.31) come from studies of fluid flow in a single-porosity medium. However, they can be
used in the solution of the double-porosity model since at long time the fluid behavior resembles that of a fluid in
homogeneous reservoir. Mathematically,

nis) -s as s—0, (A.32)

which is then(s) of a single-porosity medium. Accordingly, we can use Egs. (A.30) and (A.31) in the model of
double-porosity.

Equations (A.20) and (A.26) include the terms Zfﬂhd—qexg (k;)/(rextk?), respectively, whose inverse finite
Hankel transform is time-independent. This implies that the time-independent terms of Eqgs. (A.30) and (A.31) must
equal the inverse finite Hankel transform of 2 2@nd —qgexG (k;)/ (rexik?), respectively. Therefore,

. Il,o(kiv 17 T) le(TEthi) _ Tz rgxt 37ﬂ£e1xt — 4rgxt IOg(TEXt) - 27ﬂt§xt -1
> 2 =502 — 5 log(r) - s . (A33)
—1 kil Jf(ki) = Ji(reaks)]  2(r&a—1) rea—1 4(ree — 1)
and
_ Z ki) Iy o(ks, 1, 7) J1(rexdk:) - r2 B log(r)
o b [T2 (ki) — T2 (rexths)] 202, —1) 121 A3
_ rext + 2rext — 4rdlog(rext) — 3 2Y(qext
4(rgq — 1) e — 1
Substituting Eq. (A.29) into Eq. (24d) and using the previous closed formulas, the pressure is
k:“t Il o(ki 1 T)Jl (rextki) 2 r2 2
= t ———1
ha(r:t) = 7 Z (k) — T2 (redks) trz i\t T gl
_ 318 — 4rex lozg(rext) 21— 1 i Qext[ 2 7;2 +t) — lgg(r) (A.35)
4(r&q 1)2 ac— 1\ 4 ree — 1
_ Text + 215 — 41810 (Text) — 3] 2ygext(1 — e7/Y)
4(7%« -1y rée — 1 7
where

G(kirt) = X(kis t) + (qext/Tex)G (ki) [Q2(ki 1) — Ra(ki t)],

-l G {3} Do ()]
Ra(ks,t) = %kii(ki’t%
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andk; are the positive roots & 1(k;, 1, rex). Note that to findj(k;, t), we write@l(ki7 t) = 1/k? + J?l(ki, t).

The time-dependent terms in Egs. (A.30) and (A.31) are included in Eq. (A.35) in order to describe the long-time
fluid behavior. It is worth mentioning that these terms are omitted in the Cinelli formulas (Cinelli, 1965) of the NN-
BCs case. Equation (A.35) recovers the results in Muskat (1934), Matthews and Russell (1967), and del Angel et al.
(2014) when the limit of single-porosity is taken.
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