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The exploitation of oil and gas can be stimulated through hydraulic fractures (HF), which are discontinuities in the rock
formation induced by the injection of high pressurized viscous fluids. Because there exists considerable variability in
geologic formations, such as oil and gas reservoirs, the computational models, and, consequently, the predictions drawn
from simulations, might lead to misleading conclusions, despite the use of efficient and robust numerical schemes. In
order to take into account uncertainties on the numerical results due to the variability in the input data, a stochastic
analysis of HF is presented here. The elasticity modulus of the rock and the confining stress are assumed to be described
by random variables, and therefore, the equations governing the fracture propagation are recast as stochastic partial
differential equations (SPDEs). In order to solve the resulting problem, among several alternatives available in the
literature, a stochastic collocation method is adopted. The elasticity modulus probability distributions are constructed
using two different approaches, both using a small amount of information. A number of numerical simulations are
presented in order to illustrate the impact of the uncertainties in the data input on the fracture propagation.
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1. INTRODUCTION

Hydraulic fracture (HF) is a generic denomination for the propagation of brittle fractures in prestressed solid media
resulting from the injection of pressurized viscous fluid. These tensile fractures are found in nature, as those observed
on deep underground produced by pressurized magma. Many engineered processes are designed to mimic these natu-
ral phenomena. In particular, in the realm of oil and gas exploitation, HF are generated in subterranean reservoirs
in order to stimulate their productivity. The fracture is initiated at a well and propagates in planar regions that are
perpendicular to the direction of the minimum principal in situ confining stress. At a later stage of the stimulation
treatment, proppant is added to the fracturing fluid and is then deposited in the interior of the fracture. This proppant
pack is responsible for enhancing local permeability by forming a conduit to gas and oil when the treatment is finished.

Experimental tests or indirect field monitoring involving HF are expensive procedures and only provide limited
information. Therefore, numerical simulation represents an appealing alternative to be used on the design and opti-
mization of such stimulation treatments [1]. Because there exists significant variability in geologic formations such
as oil and gas reservoirs [2, 3], computational simulations might lead to misleading conclusions, despite the use of
reliable numerical schemes. Quantifying the impact of input uncertainties on final results of the numerical simulation
has attracted considerable attention along the last few years, and various methods have been developed and applied
successfully (please see [4] and reference therein).

Here, we consider the elasticity modulus of the rock formation and the confining stress uncertain parameters [2].
Under that circumstances, the original governing equations [5] are reformulated as stochastic partial differential equa-
tions (SPDEs). The interest relies not only on finding solutions expressed through first- or second-order statistical
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moments, but also on quantifying the simulations output uncertainties, if one wants to increase the confidence in the
predictions. Perturbation methods and sensitivity analysis [6] are employed as uncertainty quantification (UQ) meth-
ods in the realm of engineering and applied sciences, whenever uncertainties in the input data are small and the models
are only slightly nonlinear. When larger uncertainties are to be considered, those methods are no longer adequate. A
considerable number of methodologies for tackling this situation exploring spectral expansions of the stochastic re-
sponse using polynomial chaos (PC) have been proposed recently. The use of PC for establishing a framework for UQ
methods was first proposed in [7]. After that, many alternatives relying on similar ideas and concepts have been de-
veloped and, due to their effectiveness, are quite often used on complex simulation problems, replacing the traditional
Monte Carlo method. Different areas have been covered ranging from fluid mechanics [8] to applications involving
eigenvalue problems [9] and MEMS [10]. This was made feasible by expanding the original PC expansions, using
generalized polynomial chaos (gPC) or polynomial dimensional decomposition (PDD), such that arbitrary probability
distributions could be addressed [11-13]. Difficulties arising from adapting complex or commercial computational
codes have stimulated the design of techniques that combine the fast convergence of polynomial expansion methods
based on Galerkin projections with the nonintrusive character of sampling methods. In that context, stochastic collo-
cation methods (SCMs) emerge as appealing alternatives. They consist of building polynomial interpolations of the
stochastic solution via solving, independently, a deterministic problem for each interpolation point.

The initial ideas relying on global polynomial expansion over the stochastic dimension has shown not to be robust
when the solution exhibits discontinuous dependence on the input random parameters. Convergence deterioration is
observed because global polynomials are not able to resolve local discontinuities given rise to the well-known Gibbs
phenomenon. Moreover, for time-dependent problems, the error of the approximation might grow substantially during
long-term integration [14]. Therefore, this scenario indicates the need for more efficient and robust schemes in order
to address those potential drawbacks. A deeper discussion of this topic is outside the scope of the present work, and
the interested reader can find viable alternatives, based on adaptivity, to remedy those issues in [15] and [16].

Here, due to the easiness of implementation conjugated with the expected smoothness of the HF evolution with
respect to the input parameters, we have adopted an SCM employing Lagrange polynomials to build the stochastic
interpolation. The use of stochastic collocation was also motivated by the fact that, in the present work, we are
only dealing with low-dimensional stochastic spaces, thus avoiding the so-called curse of dimensionality that poses
limitations to several stochastic simulation methods [17].

The main focus of the present work is on understanding, in the context of HF simulation, the impact of the
aforementioned uncertainties in the prediction of engineering quantities of interest. The stochastic computational
implementation consists of building a wrapper around the deterministic code. As a deterministic solver, we use a
plane-strain version of the numerical method proposed in [5]. As in any other stochastic simulation, we begin by
proposing a probabilistic description of the uncertain input parameter. Two different methodologies are used. Both
recognize that experimental data are scarce and difficult to obtain for HF. The first method relies on assuming a
log-normal distribution; thus, only the mean and dispersion values are used to calibrate the probabilistic model. The
second method employs the principle of maximum entropy [18] and is derived using the same information that is used
for the obtaining the log-normal distribution.

The rest of the paper is organized as follows: In Section 2, we present the governing equations for HF evolution. In
Section 3, we, briefly, introduce the collocation method used to propagate the uncertainties. In Section 4, we discuss
the probabilistic modeling of the input data. In Section 5, we present a number of numerical results. Finally, we
provide concluding remarks in Section 6.

2. HYDRAULIC FRACTURE MODELING

Hydraulic fractures naturally tend or are designed to propagate in planar regions orthogonal to the direction of the
minimal confining stress. Its evolution is driven by fracturing fluid injected at high pressure, breaking the rock for-
mation, and this fluid is partially lost because it might leak off toward the ambient rock. Therefore, the physics of the
hydraulic fracture propagation involve nonlinear fluid flow, elastic deformation, and linear elastic fracture mechanics.
The model for describing HF addressed here is a one-dimensional version of the one presented in [5], as long
as plane strain evolution is assumed. The resulting mathematical model, to be described below, results in a coupled
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nonlinear free boundary problem involving integral and partial differential equations, which only can be solved, even
in the present one-dimensional (1D) setting, with the help of numerical techniques.

The quantities of interest, to be obtained through numerical simulations, used as support to the design of HF in
oil exploitation are the area covered by the fracture (often referred to as footprint), the fracture opening over this area
and the fluid pressurg;. The former, in the plane strain situation, is reduced to the length of the fractijtg @nd
the opening field is denoted agz, t), wherex andt are the spatial position and the time. A schematic view of HF is
depicted in Fig. 1.

Before considering, in more detail, the equations governing the problem, in the following we reproduce dimen-
sionless quantities introduced in [5]. The use of a dimensionless form of the equations is twofold: obtaining a better
conditioned numerical problem and establishing an objective basis to analyze the competition among different physi-
cal mechanisms present in hydraulic fracturing. The following change of variables is employed:

r=Llx, t=t1, ((t)= K*Y(T)a p=pdl, w=w.Q, o0¢= p*ZOd)(X) 1)

where/,, t., p., andw, represent characteristic length, time, pressure, and openning. The quantitjes II, and

Q represent the dimensionless spatial coordinate, the dimensionless time, fracture front locations in dimensionless
coordinates, the dimensionless pressure, and the dimensionless fracture opening, respectively. Mgrisothey,
geological confining stress, with spatial distributiy) and nondimensional magnitude given By. The use of

this change of variables yields on the following dimensionless quantities:

_ B w2p.t, Qo e K0
p*ﬂ*’ m W2 ) — c w, 9k Elw,

9e (2)
whereE' = E/(1 —~?), E andv are the rock elasticity modulus and Poisson’s ratio;= 12y, wherey is the
dynamic fluid viscosity[Q is the volumetric injection rate per unit length in the out-of-plane directitin= 2C7,,
whereC', is Carter’s leak-off coefficient; ani” = 4(2/7)'/? K¢ is the modified stress intensity factor.

Although there is a number of analytical and numerical models of HF with varying complexity [1], we choose a
model comprising a hydraulic fracture propagating in a state of plane strain (an extended version of the so-called also
KGD maodel) in order to assess the impact of input data uncertainties. This model is employed here as, although its
relative simplicity, it encompasses a number of key propagation modes and physical effects, such as spatially varying
and even discontinuous confining stress fields and Carter leak-off, while maintaining a relatively modest computational
cost. Hydraulic fracturing is a complicated process to model, as it involves the coupling of at least three distinct
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FIG. 1: Schematic view of a hydraulic fracture.
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physical processes: the mechanical deformation induced by the fluid pressure on the surrounding rock, the flow of fluid
within the fracture, and the fracture propagation. The rock deformation is governed by an elasticity equation, relating
the fluid pressure and the deformation of the surrounding media. The fluid flow, due to the particular characteristics of
the flow along the crack, is modeled by the Reynold’s lubrication theory. Moreover, boundary conditions describe the
crack propagation conditions. The criterion for fracture propagation is given by the conventional energy-release rate
approach of linear elastic fracture mechanics theory (LEFM). The equations are briefly presented in the dimensionless
form, as follows:

2.1 Elasticity Equation

ge [TV QT w)

=10 (x, T, w) = Bo(w) @y, w) = =7 ey (= X)?
—v(T,w

dx’ ®3)
wherell stands for the net pressure.

2.2 Fluid Flow Equation

MNytw) Hr-tl) 1 0
ot g [T — To(x)]  gm OX [Q(XJ?CU)

- Y(T’ (,U) <x< ’Y(Tv (U)

whereH is the Heaviside function and its argumegt not known a priori, denotes the time that the pgintithin the
fracture was first exposed to the fluid. Moreov&(t) is the dimensionless injection rate and the Dirac d&{a)
defines the position of the injection well.

Besides the space and time coordinateand T, we introducew, the third argument for the fields above, in
order to represent the random dimension to be introduced in detail later and needed for describing uncertainties.
Formally, the solutions to be obtained by solving the mathematical problem resulting from the modeling are sought
in functional spaces resulting from a tensor product between canonical space-time spaces and a complete probability
spacgT, F, P).T stands for the space of outcom&sis the corresponding-algebra (set of all subsets often referred
to as events), an® : F — [0, 1] is the probability measure.

3Ol (X, T, w)
ox

} + g0 ¥ (T)00(x) @)

2.3 Boundary and Propagation Conditions

A zero flux boundary condition is imposed on the fracture boungasyy(t,w) x = —vy(t,w)

LOTI
tim 32

fim @72 =0 (%)

whereé, = v — x is a local coordinate representing the distance from a fracture interior point to the fracture tip. The
evolution of the moving boundary is governed by the classical condition derived from (LFEM)

i 7 =0 ©
whereg,, is the dimensionless rock toughness defined in Eq. (2).

The asymptotic square-root condition (6), only prevails in a tiny region of the domain, which might not be captured
at the computational length scale. Moreover, immediately behind, in a so-called near-tip region, another asymptotic
trend develops within a layer, which can be tracked by means of reasonable spatial discretization schemes. This
last asymptotic behavior strongly influences the dynamics of the whole system. Indeed, HF evolution results from
the competition of two physical process involving dissipation and fluid balance. Here, we will not consider leak off
(9. = 0) and, therefore, all fluid injected along the treatment is stored within the fracture. Thus, only dissipation
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mechanisms will determine the dominant characteristics of the evolution. Dissipation is due to the viscosity of the
fluid flowing through the fracture cavity and to energy needed to fracture the rock. Typically, the HF starts in the so-
called viscous-dominated regime. € g = 0) in which the main part of energy is lost to the flow. Along the fracture
evolution, the energy loss for breaking the rock tends to increase. Nevertheless, the viscous dominate regime endures
for a period, which goes way beyond the treatment time. That justifies to consider only the dissipation associate to the
fluid flow. More details about the multiphysics and multiscale behavior of HF can be found in [5].

Assuming the viscous dominated regime, the fracture tip asymptotic behavior of the fracture is considered to
follow the following condition below [5], which is weakly enforced within the deterministic solver and plays a crucial
role in the determination of the fracture front.

w2 376 (/B B VB (ge,)2/s @)

The above asymptotic is presented in a dimensional form to establish the connection of the fracturewreitirg
near-tip region and the elasticity modulus, which will be considered an uncertain input parameter. In Egténds
for the fracture propagation velocity.

3. STOCHASTIC FORMULATION AND UNCERTAINTY QUANTIFICATION

In order to obtain reliable predictions from numerical simulations, two key ingredients are in need: a robust numerical
solver and a method to propagate unavoidable uncertainty present in the input data. Here, in order to understand
better the impact of such uncertainties on the output of the simulations, we employ the implicit level-set algorithm
(ILSA) developed in [5], which has been exhaustively assessed and proved to be efficient and stable as a deterministic
solver. Because it requires a dedicated computational code with many particular features, a nonintrusive uncertain
propagation scheme is more convenient. The uncertainties are characterized through random variables, implying that
the sought solution of the hydraulic fracture evolution problem consists of stochastic fields representing the opening of
the fractureQ[x, T, 0(w)], its length?[t, 6(w)], and the net pressure fielt{x, T, 0(w)] belonging to the functional

spaces mentioned previousB(w) is a finite d-dimensional vector with identically distributed continuous random
variablesf,, as components defined over the stochastic sudpertc I'. Admitting 0, (k¢ = 1,...,d) mutually
independent with PDFsy(0y,), the joint PDF is written ap(0) = HZ:1 Pk (0k).

By characterizing the uncertainty through random variables, we ended up with a stochastic time-evolution problem
defined over ad + 1)-dimensional space. As a stochastic solver for numerically solving that problem, we opted for
using the nonintrusive SCM [19], which has been proved more efficient than traditional sampling methods like Monte
Carlo, often employed in engineering applications. At this point, it is worth mentioning that the choice of a SCM relies
on the expectation of having enough smoothness of the response with respect to the uncertain input data and, also, on
dealing with stochastic low-dimensional inputs. The presence of discontinuities entails the need for more efficient and
robust numerical schemes like those mentioned in the Section 1.

We will not present ILSA used to solve the deterministic nonlinear free-boundary problem because it can be
inserted as a blackbox in the computational framework provided by stochastic collocation. The interested reader
can find all details about this deterministic solver in [5], but it is worth remarking that this key ingredient relies on
enforcing, as a boundary condition for the crack evolution, the relation (7) at the elements of the computational grid
containing the fracture tip. This asymptotic condition involves the uncertain elasticity modulus.

The basic idea of the collocation approach is to approximate the solution by a polynomial interpolation defined
over a multidimensional random space associate to the uncertainties. This polynomial interpolation is built using the

problem solution computed at a setif points in the stochastic spa{@{wm = {Gi}fi(lj) . At each one of those

points, we solve the fracture evolution problem in order to obtain the fields vari@blgs T, 8?), I/ (x, T, 87), and
I (x, 7, ©7). The integer indej denotes the level of the interpolation (number of employed interpolation points) and,
consequently, is related to its accuracy. Therefore, the interpolated stochastic fields for a specified level [fixed number

of interpolation pointsM ()] are built as follows:
M

(@10, 0) =3 [QE7,00), T1,(5, 7, 60), £(&, 7, 84)] LL(6) (8)
k=1
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whereL;, are chosen as multivariate Lagrange polynomials. There are a number of different possibilities for choosing
the set of the collocation points. Typically, one selects a distribution of points in one dimension and obtains the grid
for the multidimensional domain through tensor products of this (1D) set of points. In order to keep the number of
deterministic evaluations minimal, trying to avoid the so-called curse of dimensionality, sparse grid techniques [20]
are often employed. We adopted, in one dimension, the Clenshaw-Curtis points, the nonequidistant extreme of Cheby-
shev polynomials [16]. These 1D points combined with the Smolyak quadrature allows for a nested implementation

[@ﬂ(ljﬂ) ) @Mj)}, such that hierarchical interpolations can be easily obtained. Thus, aiming at obtaining a more
accurate approximation, a new leyiel- 1, corresponding to an increase on the number of interpolation points, might
be employed. Thd-dimensional grid is built with the help of sparse grid strategies and we only need to compute the
deterministic solution associate to the new points added to the grid. Ad hoc convergence criteria can be used in order
to select the final approximation levgl

The statistics of the solution, representedrbth moments of the random response (8), can be estimated in a
straightforward way by either performing the corresponding integrals or by sampling the distrip(@iprThe first
option leads to the computation of integrals of products between the joint PDF and the interpolation polynomials
over the stochastic support, which can be calculated beforehand. Sampling appears as an appealing way to obtain the
statistics, if this calculus become tedious due to high dimensionality. In this case, depending on the PDF, costless
automatic generator of random variables can be used, as it is the case for standard and uniform variables. Typically,
the sought statistics are low moments as mean values or variance. Even reasonable approximations of the PDF can
be computed by employing enough collocation points and samplings. It is worth mentioning that obtaining those
response statistics is carried out by a postprocessing of the computed deterministic solutions, not representing a
significant increase on the computational costs, even when more sophisticated numerical schemes are needed for
sampling. It is also interesting to remark that the analytical representation of the solution (8) allows one to create an
explicit connection among input and output uncertainties regarding a sensitivity analysis.

4. MODELING INPUT UNCERTAINTY

The SCM, briefly described in the Section 3, is capable of propagating uncertainties in the input data that should be
characterized before the computations. The present section is devoted to discussing alternatives, within an engineering
perspective of HF, for modeling those uncertainties. The model parameters are organized into dimensionless quantities
(2), but we address the set of parameters present in the governing equations before scaling because their physical
meanings help on characterizing the potential uncertainties. Besides, we eliminate from this set the &3lantf (

elastic toughnessH{’) parameters because we assume that fracture evolves in the viscosity-storage gegirie (

andg, = 0). Therefore, the remaining parameters are the elastic modBl)sthie fluid viscosity '), and the rock

confining stressd.).

The viscosity of the injected fluid can be assessed through accurate laboratory tests. Therefore, we do not expect
the same amount of uncertainty in this parameter when compared to the other two. Indeed, the difficulties arising
from the rock being located underneath at large distances from the free surface lead to a scenario of scarce data and
indirect measurements or test laboratories carried out on different ambient conditions. Those factors lead to imprecise
descriptions of the input parameters present on the HF modeling [2, 3, 21].

Because of the strong nonlinear character of the HF model, we decided to isolate effects and emphasize the im-
pact of the elasticity modulus’s uncertainties on the problem solution. Because the hydraulic fracture is designed
such to remain within a layer of the rock, this modulus is considered spatially homogenous along the fracture sur-
roundings. Its variability is attributed only to the factors already discussed, and it is modeled by means of a random
variable.

Considering that the most reliable available data consists of a small number of samples such that mean, variance,
and the dispersion interval can be estimated, we built two different probabilistic models in order to describe the
random elasticity modulus. The first relies on assuming a log-normal probability distribution, which enforces that
any realization of the random variable is positive. The modulus is conveniently rewrit@:e@/l + K)(1 4 ke),
wherek regulates the variance ands a random variable with a Log-normal distribution with mean and variance
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equal tol. The parametex will be explored later to analyze the sensitivity of the response with respect to the level of
uncertainty in the input data.

The second approach borrows its main ideas from [22, 23], where the maximum entropy principle (MaxEnt) [24]
is explored such that the construction of a stochastic modeEfds cast as a constrained optimization problem.
Entropy is considered as a measure of information quantification [25] and expressed through the following function
of the random variable PDF:

T(po) = — /F po(8) loglpo (0)] 8 ©)

We seek for a probability distribution that maximizes (9) and satisfies the constraints associated to the available
information. We parametrize the elasticity modulugis= E’(1 + €), with e a random variable with PDF computed
by solving this optimization problem constrained by the following three conditions:

[ 50 po(6) do = Flg (o)) =@, i =0.1.2 (10)

wheregg(z) = 1, g1(r) = z, andg(z) = 2. Therefore, the first condition enforces normalization of the PDF, the
second and third correspond to setting a value for mean and variance. In order to establish a meaningful comparison
between the two different stochastic models for the elasticity moduluanda, are taken, respectively, equal to

0 and0.1. Moreover, the suppolifs was designed to contalt% of the samples from the log-normal distribution
corresponding to the first modél.6 < E < 1.4). The constrained optimization problem was turned into an uncon-
strained one by using Lagrange multipliers and solved through a Newton-Raphson numerical scheme. The solution is
finally given by the following PDF:

_ 2
Pe = Z[—0.6,0.6] e(0-02271.863¢7) (11)

whereZ ande stand, respectively, for the indicator and exponential functions. We generated samples of the resulting
PDF by using a Markov Chain Monte Carlo method [26, 27]. The PDFs for both models are presented in the form of
histograms in Figs. 2 and 3.

Both models yield random elasticity modula sharing the same mE9raqd variance, as long asis equal to
0.1. This value fork also insures that the samples drawn frit into the range of variability observed in the field
[2, 21].

5. NUMERICAL RESULTS

In the present section, we employ the hydraulic fracture probabilistic model introduced earlier to quantify the impact
of uncertainties on the fracture evolution prediction. More specifically, we consider the effect of uncertainties in the
elasticity modulus and the confining stress on fracture opening, well pressure, and fracture footprint. Before analyzing
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FIG. 2: Log-normal distribution of the elasticity modulus.
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FIG. 3: Distribution probability density function of the elasticity modulus computed with MaxEnt.

the uncertainty propagation, we also present a brief summary of the SCM’s computational performance by comparing
its results to Monte Carlo simulations.

5.1 Computational Performance

We consider, for an initial assessment of the computational performance of SCM when applied to the current stochastic
model, a hydraulic fracture propagating in the viscosity-storage dominating regime under a homogeneous confining
stress and a constant volumetric flow rgtg For that situation, there is a semianalytical solution [28] for the deter-
ministic problem, which helps on optimizing the spatial and time discretization scheimes=(2, At = 10). By
doing that, we intend to isolate the effects of the uncertainty in the parameter model on the responses. In those nu-
merical experiments, we consider as the unique uncertain input the elasticity modulus with a log-normal distribution
with unity mean and standard deviation equal tb We use, as figure of merit, the opening fi€ldt specified times,
namely,t = 53, T = 105, andt = 158, which are representative of the trends and behavior observed along the whole
simulation.

In order to assess the convergence of the collocation method with respect to the stochastic dimension, we employ
a reference solution obtained by Monte Carlo method replacing an exact solution, which is not available. This refer-
ence solution was computed usiB§00 samples of the random input, which was enough for achieving an accurate
approximation for mean and variance of the output. Convergence of both methods were then studied through the error
on the mean values of the response for the above-cited fixed times. The error measure is given by the spatial averaged
norm of the difference between computed mean values and those of the reference solution normalized by the absolute
value of the last one. At that point, it is worth mentioning that the computational cost associated with each method
is legislated by the number of calls to the deterministic solver, which, for Monte Carlo, is the number of sampling
points, whereas, for collocation, it corresponds to the number of interpolation nodes on the stochastic support space.
Indeed, as stated before, the statistics of collocation solution were computed by sampling the approximated solution
(8), which adds almost nothing to the final computational cost.

Convergence studies are depicted in Figs. 4 and 5, and clearly, for the present computations, SCM outperforms
Monte Carlo. Monte Carlo requires almost 3000 sampling points for attaining an error equallfy 3. Collocation
achieved the same error at interpolation level 3, which, for the selected grid of points, demands the computation to be
performed only in nine interpolation nodes. Although not presented here, the convergence behavior for the variance
follows a similar pattern.

In order to stress the accuracy of the computed solutions using SCM, we present, in Fig. 6, a comparison among
the reference Monte Carlo solution for the fracture opening ni&ant = 158) and the approximations obtained
with SCM for levels 1-4 of interpolation. In this figure, we label the different levels of interpolation by their cor-
responding number of interpolation nodes, which makes easier an assessment of the required computational ef-
fort.
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FIG. 5: Convergence of stochastic collocation method.
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FIG. 6: Stochastic collocation computed fracture opening fields for different interpolation levels compared to the
Monte Carlo reference solution.

Often, high-order statistics are required; thus, we also investigated the convergence of the PDF of the fracture
opening at the injection point at = 158. Figure 7 depicts the PDFs obtained by sampling the solution (8) for
different levels { = 1, ...,4) of interpolation. Again, the interpolation levels were labeled with the total number of
corresponding grid points. In Fig. 7, we postprocessed the interpolated solution using 5000 sampling points.
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FIG. 7: Stochastic collocation computed PDFs for different interpolation levels compared to the Monte Carlo refer-
ence solution.

5.2 Hydraulic Fracture Uncertainty Quantification

Now, we go deeper on understanding how the uncertainty on the elasticity modulus propagates along the fracture
evolution. The same conditions applied to the previous example are considered here, but a different study is carried
out aiming at emphasizing UQ aspects of the problem. We also use the same discretization parameters for spatial
and time domain. The stochastic components of the hydraulic fracture evolution are resolved employing SCM with
interpolation level 4. Again, unless stated otherwise, all results were obtained using a log-normal distribution for the
elasticity modulus.

In Fig 8, we present the mean fracture fracture opening at injection tiree83, T = 105 andt = 159 with error
bars twice the size of the standard deviation. We observe that uncertainties on the fracture opening increases with time
and are larger at the region near the well.

Figure 9 depicts the sensitivity of the output uncertainty with respect to the degree of variability of the input data.
In Fig. 10, we plot the PDFs of fracture opening at the injection ®él} = 0, T = 411), which seems to be the most
critical within the fracture domain, as previously observed. We analyze the responses for three different values of
which, as stated before, modulates the standard deviation of the input data. The patterns of uncertainty are remarkably
different, reflecting the nonlinear relationship between input and output data.

We now observe, through Fig. 10, that a priori inferences about uncertainty propagation based on the input are
not feasible. In that figure, we depict the computed PDF of fracture opening at the well at injectiontimél. In
Fig. 10, we present an entirely different PDF corresponding to a log-normal distribution, the same type of probability
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FIG. 8: Effect of the input uncertainty on the fracture opening field for different injection times.
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FIG. 9: Q(x = 0,7 = 411) uncertainty response for different standard deviations of the input data.
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FIG. 10: Computed PDF of the fracture opening at the injection &l = 0, T = 411)].

law of the input, with the same expected value and variance of the computed solution. The output (top figure) departs
significantly from log-normality.

Now, the sensitivity with respect to the input uncertainty modeling is assessed. We analyze the HF response using
the two different stochastic models developed previously in Section 4. The evolution of the HF is summarized through
Figs. 11 and 12. The computed results with the two input models are quite different. Uncertairiég en0, 1)
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FIG. 11: Time evolutions of the fracture opening at the injection vi@llx = 0, )] computed with the two different
input models.
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FIG. 12: PDF of the fracture opening at the injection welly = 0, T = 411) computed with the two different input
models.

tend to be larger when we employ the elasticity modulus model built based on the MaxEnt principle. These differences
are made more remarkable by comparing the two PDEY gf= 0, T = 411), as depicted in Fig. 12.

Numerical predictive models provide a basis for enabling monitoring processes through inverse formulations. Par-
ticularly, hydraulic fracture evolution monitoring is essential and a complex task, inasmuch as it occurs underneath and
only can be tracked by means of indirect measurements using microseismic signals or tiltimeters. This last technology
provides the deformation of the rock at specific points where the sensors are placed, usually quite a distance away
from the fracture. Recently, an inverse formulation combining extended Kalman filter, tiltimeters, and the forward
model discussed above was proposed in [29]. Here, we carry out a prior assessment of the sensitivity of this inverse
formulation to uncertainties on the forward model by simulating the tiltimeters measurements. The variability in the
response is presented on Fig 13, where a confidence interval is plotted around the expected value of the sensor signal
along the time.

We now illustrate the impact on the fracture evolution when uncertainties on the stress confining are also con-
sidered. In the present modeling, as stated in (1), the confining stgasdefined by its magnitudg, and spatial
distributiond(x). In the previous simulations, we have considered that both were certain, known, and spatially uni-
form. In the next results to be presented, both magnitude and spatial distribution will be taken as uncertain. The
confining stress field will be supposed to change linearly around the well pogftiaf) = «; x] with angular orien-
tation (the angular coefficient of linear distribution) described by a random variable. Indeed, both magnitude and
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FIG. 13: Deformation evolution monitored with a tiltimeter: average value and confidence interval.
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orientation are modeled as random variables and assumed mutually independent with log-normal probability law, and
their variability are consistent with observed field data [2, 30].

Therefore, we are dealing with a three-dimensional stochastic support space because the Elasticity Modulus is
still considered uncertain. As mentioned earlier a Smolyak algorithm was used to generate a sparse grid for the
interpolation points. After a number of initial convergence tests consisting on refining the interpolation level and
comparing the computed results, we fixed, for all results below, the level on 4 (corresponding to 177 interpolation
nodes in the 3D grid).

In order to evaluate the output sensitivity with respect to input uncertainty, we plot, in all figures appearing in the
sequence, both the results not considering and taking into account the added uncertainty associated to the confining
stress field. The results obtained from the different sets of uncertain parameters are labeled as 1D and 3D in reference
to the dimensionality of the corresponding stochastic space.

First, we remark the significant difference between the pressure responses at the injection well. The mean pressure
evolution is presented in Fig. 14. The comparison between the two curves reveals that not only the mean values
achieve different values. Also, the uncertainty on the predicted pressure is much more accentuated in the 3D case.
That indicates a strong dependence of the pressure injection on the confining stress.

Also, remarkable differences are found when the PDFs of fracture opening at the injection well are compared,
as depicted in Figs. 15 and 16. These two figures help us understand the structure of the uncertain solution and its
dependence on the input parameters. They present the evolution of uncertainty on the fracture opening along the time.
It is noticeable that assuming different hypothesis about the input data leads to significant different predictions.

A nonuniform confining stress engenders a spatially heterogeneous load applied to the fracture. That allows for a
non symmetric evolution of the fracture, which is contemplated, thus, by the model containing the uncertain confining
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FIG. 14: Mean pressure evolution at the injection well.
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FIG. 15: PDFs of fracture opening at the injection wellat 97.
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FIG. 16: PDFs of fracture opening at the injection wellat 225.

stress (3D model). Figure 17 depicts the evolution of the mean of the fracture half length along with variability for
both models. There are two curves for the 3D model due to the nonsymmetric evolution mentioned before.

6. FINAL COMMENTS

The present work investigates hydraulic fracture computational simulation in the presence of uncertainties on the in-
put parameters. We employ a stochastic collocation framework to quantify the effect of such uncertain parameters,
here limited to the elasticity modulus and the geological confining stress, on engineering quantities of interest, such
as fracture extension and opening. The stochastic simulations require the modeling of the uncertainty on the inputs
through random variables and propagates those uncertainties using a polynomial interpolation defined over the ran-
dom domain. The modeling of the parameters, based on limited information, has followed two paths, leading to two
different input models. The resulting predictions have shown to be quite sensitive to the choice of the stochastic input
model.

The stochastic collocation framework leads to the computation of a number of independent deterministic prob-
lems, similarly to classical Monte Carlo simulation. Indeed, the difference to Monte Carlo relies on potential savings
of computational costs. A number of numerical simulation demonstrate that, for the present application, the collo-
cation method outperforms Monte Carlo. It is again adequate to emphasize that this good performance of SCM is
related to the smoothness of the HF response and to the low dimensionality of the analysis performed in the present
work.
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FIG. 17: Nonsymmetric fracture length evolution.
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