International Journal for Uncertainty Quantificatiod (3): 225-242 (2014)

A MULTI-FIDELITY STOCHASTIC COLLOCATION
METHOD FOR PARABOLIC PARTIAL DIFFERENTIAL
EQUATIONS WITH RANDOM INPUT DATA

Maziar Raissi & Padmanabhan Seshaiyer*

Department of Mathematical Sciences, George Mason University, 4400 University Drive, MS:
3F2, Planetary Hall, Fairfax, Virginia 22030, USA

Original Manuscript Submitted: 05/07/2013; Final Draft Received: 09/03/2013

Ower the last few years there have been dramatic advances in the area of uncertainty quantification. In particular,
we have seen a surge of interest in developing efficient, scalable, stable, and convergent computational methods for
solving differential equations with random inputs. Stochastic collocation (SC) methods, which inherit both the ease of
implementation of sampling methods like Monte Carlo and the robustness of nonsampling ones like stochastic Galerkin
to a great deal, have proved extremely useful in dealing with differential equations driven by random inputs. In this
work we propose a novel enhancement to stochastic collocation methods using deterministic model reduction techniques.
Linear parabolic partial differential equations with random forcing terms are analysed. The input data are assumed to be
represented by a finite number of random variables. A rigorous convergence analysis, supported by numerical results,
shows that the proposed technique is not only reliable and robust but also efficient.
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1. INTRODUCTION

The effectiveness of stochastic partial differential equations (SPDES) in modeling complex systems is a well-known
fact. One can name wave propagation [1], diffusion through heterogeneous random media [2], randomly forced Burg-
ers and Navier-Stokes equations (see e.g., [3—6] and the references therein) as a couple of examples. Currently, Monte
Carlo is one of the most widely used tools in simulating models driven by SPDEs. However, Monte Carlo simulations
are generally very expensive. To meet this concern, methods based on the Fourier analysis with respect to the Gaussian
(rather than the Lebesgue) measure, have been investigated in recent decades. More specifically, the Cameron—Martin
version of the Wiener Chaos expansion (see, e.g., [7, 8] and the references therein) is among the earlier efforts. Some-
times, the Wiener Chaos expansion (WCE for short) is also referred to as the Hermite polynomial chaos expansion.
The term polynomial chaos was coined by Nobert Wiener [9]. In Wieners’ work, Hermite polynomials served as an
orthogonal basis. The validity of the approach was then proved in [7]. There is a long history of using WCE as well

as other polynomial chaos expansions in problems in physics and engineering. See, e.g., [10-13], etc. Applications of
the polynomial chaos to stochastic PDEs considered in the literature typically deal with stochastic input generated by
a finite number of random variables (see, e.g. [14—17]). This assumption is usually introduced either directly or via a
representation of the stochastic input by a truncated Karhunéwel(&L) expansion. Stochastic finite element meth-

ods based on the Karhunen-éh@ expansion and Hermite polynomial chaos expansion [14, 15] have been developed

by Ghanem and other authors. Karniadakis et al. generalized this idea to other types of randomness and polynomials
[16, 18, 19]. The stochastic finite element procedure often results in a set of coupled deterministic equations which
requires additional effort to be solved. To resolve this issue, the stochastic collocation (SC) method was introduced.
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In this method one repeatedly executes an established deterministic code on a prescribed node in the random space
defined by the random inputs. The idea can be found in early works such as [20, 21]. In these works mostly tensor
products of one-dimensional nodes (e.g., Gauss quadrature) are employed. Tensor product construction despite mak-
ing mathematical analysis more accessible (cf. [22]) leads to the curse of dimensionality since the total number of
nodes grows exponentially fast as the number of random parameters increases. In recent years we are experiencing
a surge of interest in the high-order stochastic collocation approach following [23]. The use of sparse grids from
multivariate interpolation analysis is a distinct feature of the work in [23]. A sparse grid, being a subset of the full
tensor grid, can retain many of the accuracy properties of the tensor grid. While keeping high-order accuracy, it can
significantly reduce the number of nodes in higher random dimensions. Further reduction in the number of nodes was
pursued in [24-27]. Applications of stochastic Galerkin and SC methods take a wide range. Here we mention some of
the more representative works. It includes Burgers equation [28, 29], fluid dynamics [16, 30—33], flow-structure inter-
actions [34], hyperbolic problems [35—-37], model construction and reduction [38—40], random domains with rough
boundaries [41-44], etc.

Along with an attempt to reduce the number of nodes used by sparse grid stochastic collocation, one can try
to employ more efficient deterministic algorithms. The current trend is to repeatedly execute a full-scale underlying
deterministic simulation on prescribed nodes in the random space. However, model reduction techniques can be em-
ployed to create a computationally cheap deterministic algorithm that can be used for most of the grid points. This
way we can limit the employment of an established while computationally expensive algorithm to only a relatively
small number of points. A related method is being used by Willcox and her team but in the context of optimization
[45]. “Multifidelity,” which we also adopt, is the term they employed in their work. Reduced order modeling, using
proper orthogonal decompositions (POD) along with Galerkin projection, for fluid flows has seen extensive applica-
tions studied in [46-55]. Proper orthogonal decomposition (POD) was introduced in Pearson [56] and Hotelling [57].
Since the work of Pearson and Hotelling, many have studied or used POD in a range of fields such as oceanography
[58], fluid mechanics [46, 48], system feedback control [59-64], and system modeling [49, 52, 54, 65]. In this work
we analyze linear parabolic partial differential equations with random forcing terms. We propose a novel method
which dramatically decreases the computational cost. The idea of the method is very simple. For each point of the
stochastic parameter domain we search to see if the resulting deterministic problem is already solved for a sufficiently
close problem. If yes, we use the solution to the nearby problem to create POD basis functions and we employ the
POD-Galerkin method to solve the original problem. We provide a rigorous convergence analysis for our proposed
method. Finally, it is shown by numerical examples that the results of numerical computation are consistent with
theoretical conclusions.

2. PROBLEM DEFINITION

Let D C R? be a bounded, connected, and polygonal domain(@nd", P) denote a complete probability space with
sample spac®, which corresponds to the set of all possible outcorfigs.theo algebra of events, anfl : F — [0, 1]

is the probability measure. In this section, we consider the stochastic linear parabolic initial-boundary value problem:
find a random field: : [0, 7] x D x £ — R, such thatP-almost surely the following equations hold

Ou(t,x, w) — Au(t,x, w) = f(t,x, w) in  (0,7T] x D xQ,
u(t,x,w) =0 on (0,T] x 0D x Q, 1)
u(0,x,w) =0 on DxQ.

Existence and uniqueness of the solution of (1), as stated in [66], can be achieved by assuming that the random forcing
field f : [0, 7] x D x 23 (t,x,w) — f(t,x,w) € R satisfies

T
/ / f2(t, x, w)dxdt < +00, P-a.e.inQ. (2)
o JD
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Following [22] and inspired by the truncated KL expansion [67], we make the assumption that the random field
depends on a finite number of independent random variables. More specifically,

flt,x,w) = ft,x,y(w)) on [0,7] x D x Q, 3)

wherey(w) = (y1(w),...,y-(w)) andr € N;. LetT,, = y,(£2) denote the image of the random variap)g for
n=1,...,r,andl’ = [, _, T,,. Furthermore, similar to [27], we make the assumption that the random variables

vy = (y1,--.,yr) havep : T — R, as their joint probability density function. Defirﬂ%(l“) andV, to be given by

L2(r) :={yer:/r||y|\2pdy<oo},

and
V, = L*(0,T; HY(D)) ® L3(T),

with inner product
(o), = [ (W) 0 om0 0.

where .
(), v(9)) 2073123 (D) = / /D Vu(t, x,y).Vo(t,x, y)dxdt.

A functionu € V,, is called aweak solutior(see e.qg., [66]) of problem (1) if

//(%u'udxpdy—k//Vu.Vvdxpdyz//fvdxpdy, VveH&(D)@Li(F) andvt € (0,7], (4)
rJo rJo rJo

andu (0, x,y) = 0, p-almost everywhere ifi. The existence and uniqueness of the solution of problem (4) is a direct
consequence of assumption (2) firsee [68].

For each fixed € (0,77, the solutioru to (4) can be viewed as a mapping I' — H} (D). In order to emphasize
the dependence on the varialflewe use the notations(y) and f(y). As in [66], problem (4) can be equivalently
expressed as finding(y) € Hj (D) such thap-almost everywhere ifi, u(0, x,y) = 0, and

/ Opu(y)vdx +/ Vu(y).Voudx = / f(y)vdx, Vv e Hj(D)andvt e (0,T], p-a.e.inT. (5)
D D D

3. MULTIFIDELITY COLLOCATION METHOD

In this section we explain our proposed multifidelity stochastic collocation method while applying it to the weak form
(5). We are in fact seeking a numerical approximation to the exact solution of (5) in a finite dimensional subspace
Vo.n Of V,, given byV, ,, = L?(0,T; H,(D)) ® Pp(T'), whereH (D) C H}(D) is a standard finite element space
andPy,(T') C L2(T) is the span of tensor product polynomials with degree at mest(p;, . . ., p.). Choose) > 0

to be a small real number. The procedure for solving (5) is divided into two parts:

1. Fixy € T, and search thg neighborhoodB,, (y) C I of y. If problem (5) is not already solved for any nearby
problem withy’ € B,,(y), solve problem (5) using a regular backward Euler finite element methpdrad let
y’ =y.Incontrast, if Eq. (5) is already solved for some point®if(y), choose the closest onegyand call it
y’. In either case, use the solutionydte B, (y) to find a small numbed € N_. of suitable orthonormal basis
functions{;(y’)}_, C Hxn(D) using the POD method. Now use Galerkin projection on to the subspace

X(y') = spar{w;(y’) }%_, to find

{ud (¥)}m=1 € XU(y') € Ha(D),
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such that
(ul',vq) + k(Vul', Vog) = k(f™(y), va) + (ugn_l, vg), Yvg € Xd(y'), m=1,...,N, (6)

anduj = 0, whereN € N, is the number of time steps, akd= 7'/N denotes the time step increments. It is
worth mentioning that., .) denotes thd.? inner product. Note that we are employing a backward Euler scheme
to discretize time.

2. Collocate (6) on zeros of suitable orthogonal polynomials and build the interpolated discrete solution
{uf'p =1 C Hi(D) @ Pp(T), @)
using

p1+1 prt+1
u:ir,lp(x7y) yA ud x y Z Zud X y]la"'vyjr)(ljl(y)®"'®ljr(y))a mzl,...,N, (8)

Jji=1 Jr=1

where the functiongi;, }_, can be taken as Lagrange polynomials. Using this formula, as described in [22], mean
value and variance of can also be easily approximated.

4. POD

In this section, we choose a fixgd € B, (y) C T" and drop the dependence of Eq. (5)ynfor notational conve-
niences. Therefore, we consider the problem of finding H} (D) such that

(wy,v) + (Vw, Vo) = (g,v), Vv e Hi(D), 9)

andw(x,0) = 0, for all x € D. Note thaty = f(y’). Lett,, = mk,k = 0,..., N, wherek denotes the time step
increments. Assum®,, to be a uniformly regular family of triangulation @ (see [69, 70]). The finite element space
is taken as
Hp(D) = {v, € Hy(D)NC(D) : vp|i € Py(K), VK € Ty},
wheres € N and P;(K) is the space of polynomials of degrees on K. Write w™(x) = w(x,t,,), and letw}"
denote the fully discrete approximation ©fresulting from solving the problem of finding;" € H} (D) such that
wi(x)=0andform=1,...,N,

1

(wi',on) + E(Vwy', Vo) = k(g™ ,vn) + (wy,' ™", vn), Yoy € Hp(D), m=1,...,N. (10)

It is easy to prove that problem (10) has a unique solutifhe Hj,(D), provided thay™ € L*(D) (see [69]). One
can also show that i, € H**1(D) andwy; € L?(D), the following error estimates hold:

tm tm
o™ — wfllo < Cho! / il o 1dt + C / ([willodt, m=1,...,N, (11)
0 0

where||.||s denotes théZ®(D) norm andC indicates a positive constant independent of the spatial and temporal mesh
sizes, possibly different at distinct occurrences.
For the so-called snapshdfs := w;"" € Hy(D),i=1,...,{, wherel <m; <mg <--- <my <N, let

V =spadUi,...,Us}.

Assume at least one &f; is nonzero, and lef1; 5:1 be an orthonormal basis ®f with [ = dim}. Therefore, for
eachU; € V we will have

l
Uz Z Uzvlb] HO (D)q)ja (12)
Jj=1

where(U;, b;) gy (py = (Vuy,", Vib;).
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Definition 4.1. The POD method consists of finding an orthonormal bgsig;j = 1,2,...,d) such that for every
d=1,...,l, the following problem is solved

{mei{} gan Z Ui71|)j)H5(D)1l)j||§1(}(D)- (13)
JJ5j=1 ] 1

A solution{mpj}?:1 of this minimization problem is known as a POD basis of rdnk
Let us introduce the correlation matrk = (K;;) ;_, € R“** given by
1
Kij = 5(Ui, Uj)uy(p)- (14)

The following proposition (see [46, 51, 52]) solves problem (13).

Proposition 4.1. LetA; > Ay > --- > A; > 0 denote the positive eigenvaluesiofandwv,, vs, ..., v; the associated
orthonormal eigenvectors. Then a POD basis of rdnk [ is given by

4
1 ,
:WZ(vi)jUj, i=1,...,d, (15)
ijl

where(v;); denotes thgth component of the eigenvecter. Furthermore, the following error formula holds:

L d
DT =D (Ui %)y 0y sl ) = Z Aj. (16)
=1 j=1

j=d+1

~ | =

Let X< := spa{1, P2, . .., b4}, and consider the problem of finding} € X¢ C H;,(D) such thatw(x) = 0
and form=1,..., N,

(w;linvvd) + k(vw:invvvd) = k(gm7vd) + (wjin_lvvd% V’Ud € Xd C Hh(D)7 m = 17 s 7N' (17)

Remark 4.1. If ¥}, is a uniformly regular triangulation and{}, (D) is the the space of piecewise linear functions, the
total degrees of freedom for problem (10)N¥g, whereN}, is the number of vertices of trianglesd,, while the total
of degrees of freedom for problem (17)ligwhered < | < ¢ < Np).

The following proposition, proved in [71], gives us an error estimate on the solution of problem (17).

Proposition 4.2. If w® € Hy(D) is the solution of problem (10} € X¢ C H, (D) is the solution of problem
(17),k = O(h), £2 = O(N), and snapshots are equably taken, thensfor= 1,2, ..., N, the following estimates

hold:
1/2

¢ !
1 m; m; .
||w’}T_wZInHO+Z Z”v(th _u)dJ)HOS C k1/2 Z ?\J , M =my, 1= laaev (18)
j=1 j=d+1
l 1/2
|wi* — wy H0+z IV (wp' —wg*)llo+ Z”V(wh —wyo| < C [k Z Aj + Ck, m # m;.

j=d+1
Combining (11) and (18) we get the following result.

Proposition 4.3. Under assumptions of Proposition 4.2, the error estimate between the solutions of problems (9) and
a7),form =1,2,..., N, is given by
. 1/2
[w™ —wllo < CR*T +Ch+C | K2 > ) (19)
Jj=d+1
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Now, with a slight misuse of notation, we assume that the funcfios given by f = f(y), wheref €
C(I';C(0,T; L?(D))) is the function employed in Eq. (5), and consider the following problem: dind H{ (D)
such thatu(x,0) = 0, forallx € D, and

(ug,v) + (Vu, Vo) = (f,v), Vv e Hg(D). (20)

Remark 4.2. Note that sincdly —y’||< 1 and under the assumption thate C(I'; C(0, T'; L?(D))) is Lipschitz con-
tinuous o, we get that| f (y) — f(¥')lco,m;22(0))= |l f —9llco,m;02(p)) < Lglly =y’ ||, whereLy is the Lipschitz
constant. Also, note that we are slightly misusing the synitoldenote both the functiohe C(T; C(0, T; L?(D)))
employed in Eqg. (5) and the functign= f(y’) € C(0,T; L?(D)) used in Eq. (9).

Let us also consider the following problem: finff € X¢ ¢ H; (D) such that:$(x) = 0 and form = 1,..., N,
(u',va) + k(Vul', Vog) = k(f™,va) + (u) "', va), VYvq € X? C Hy(D), m=1,...,N. (21)

Note that Egs. (21) and (6) are identical, using the fact that we are yisiag/(y). Our aim is to find an estimate for
|lu™ — ul*||o. First we need to prove two lemmas.

Lemma 4.1. Letw be the solution of problem (20) and letbe the solution of problem (9), then we have:

[u™ —w™ o < C|If = glleo, ;02 (D)) (22)
Proof. let = = u — w and subtract Egs. (9) and (20) to get:
(2t,0) + (V2, Vo) = (f — g,v), Vo€ Hy(D), (23)

with z(x,0) = 0, for allx € D. Lettingv = 2z and integrating Eqgs. (23) from 0 tg,, we get

1 tm d tm tm
f/ —||z||§dt+/ (vZ,vZ)dt:/ (f — g, 2)dt.

This results in
L2 o i 2 LT
Sl < [0 = glollslod < 5 [ 15— glide+ 5 [zl
0 0 0

Therefore,
T
B T — / 2|13t (24)

Now we need to bounngTHzH%dt. For this, we integrate (23) once again but this time uf'tand use the Poincar
inequality||v|lo < Cp||Vvl|o, for eachv € Hi (D), to get

Sl=@Dllo+ 7 [ ll=llodt < [ 11f = glloll=llodt-
p JO 0

T 2 2 1 T 2 5 T 2
[ 1tz < ez (5 [0 —gigaes 5 [ lalgar )
0 0 0

02 T ) C2 )
(1= 28) [ 1elidae < SETIS = aloraeion,

Choose’ > 0 such thatl — (C2/2)6 > 0, and let

&

Now, Eqg. (24) implies (22). O

Therefore,

Thus,
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Lemma 4.2. Letu[ be the solution of problem (21) and]* be the solution of problem (17), then we have
[ug" —wg'llo < CIf = gllco,r;z2(0)) (25)
Proof. let 2" = w)* — w}* and subtract Egs. (17) and (21) to get:
(2" va) + k(V2, Vug) = k(f™ — g™ va) + (271 va), Yog € X C Hy(D), m=1,...,N, (26)

with z9(x) = 0. Letv, = 27 in Eq. (26) and use Poindainequality||v|jo < C,||Vv|o, for eachv € H}(D), to
achieve

1 -
2215+ bz 12216 < EIF™ = g™ lollzi" o + 112" llo 13" lo-
p

Therefore,

CZ

1 m m m m—
(1+k) 1o < K™ = g™ o + 122l
P

which upon summation yields

m 1 J
o < K| f — - 5o )
lzd'llo < Kl f 9||C(0,T,L2(D))jz::1 <1 + (k/C§)>

Lety = 1/C2 and note thafl + yk)™ < e¥*™. Moreover, setting, = 1/(1 + yk) we find

= 1 S e G e S B
Y (s | =k = < .
;(H(k/Cﬁ)) -1 Yy -~

LettingC' = (1 — e~ Y*™) /v, we get (25). O

Now using estimates (19), (22), and (25) and Remark 4.2, we get the following error estimate.

Theorem 4.1. Letu be the solution of problem (20), and® be the solution of problem (21), for = 1,..., N, we
have

1/2

l
[u™ —ufllo< Cn+ CH T+ Ch+C [ K2 Y N , (27)
j=d+1

where the eigenvalu@s depend ory’ € B, (y) C T, and the constants C depend prandy’, but are independent
of h, k, andn.

5. ERROR ANALYSIS

In this section, we carry out an error analysis for the multifidelity collocation method introduced in Section 3 for
problem (5). In [22], the authors showed that the collocation scheme (8) attains an exponential error degay for
ug', With respect to each,,, provided that the solution of (5) is analytic with respect to the random parameters.
The convergence proof in [22] applies directly to our case. Therefore, in what follows, we prove the analyticity of
the POD solution)}* with respect to each random variallg. This proof enables us to just state the corresponding
convergence results.
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5.1 Regularity Assumptions

Before going through the convergence analysis we need to impose some regularity assumptions on the forging term
and the joint probability density functiom as in [22, 66]. In particular, we assunfieo be continuous with respect

toy € I' and that its growth at infinity is at most exponential, whenever the doimanunbounded. In order to
make it precise, we use the weight functiefly) = H:L=1 0n(yn) < 1lintroduced in [22], where,, (y,,) = 1 for

eachy,, € I',, whenever,, is bounded. Moreover, if,, is unbounded, we assume thai(y,,) = e~ %nlynl for some

o, > 0. We also employ the spac&, (T'; V) of all continuous functions : T' — V such that

max,er{o(y)|o(y)llv} < +oo,

whereV is a Banach space. In what follows, we assume thatCY.(T'; C([0, T; L?(D))). We further assume that
the joint density functiom behaves like a Gaussian kernel at infinity. More precisely, we are assuming that there exist
a constant;, > 0 such that

o(y) < Cpefz:/zl(é"y")i Yy €T, (28)

whereb,, is strictly positive ifT",, is unbounded and zero otherwise. Under these assumptions, the following proposi-
tion is immediate; see [22].

Proposition 5.1. The solution of problem (5) satisfiess C%(I'; C(0, T; H}(D))) and correspondingly, the approx-
imate solutionu?y" resulted from (21) or equivalently (6), satisfied € C2(I'; H,(D)), form =1,..., N.

Furthermore, we have the following regularity result.

Lemma 5.1. The following energy estimate holds:

p— m 2
lug'l| 2(Dywr2 @) < Cp (1 —etk /CP)) 1fllco,r;e2pyerz (),
whereC,, is the Poincaé canstant.

Proof. Similar to the proof of Lemma 4.2. O

5.2 Regularity of the POD Solution

In this section we prove that whenevgy) is analytic and infinitely differentiable with respect to each component of
v, the solutior:)* of Eq. (21) will be analytic with respect to each random paramgtet I'. To do this, we introduce
the following notations as in [22, 66]:

yn €Ly = fi Ly,

j=1,j#n

.
* .
o= I[ o

j=lj#n
Lemma 5.2 (Lemma 3.2 of [22]) Under the assumption that for eveyy= (y,,y) € T, there existsy,, < +oo
such that

and

107 f(¥)lco.r02 o)

< v ! (29)
L+l llco.r:2py)

nJd

if the solutionu”(x, y,,y}) is considered as a function af,, i.e.,u” : I, — C% (I';; L?(D)), then thejth
derivative ofu}' (x, y) with respect tay,, satisfies

whereC depends of{ f(y)|co,7;22(p)), @nd the Poincaé constant’,,.
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Proof. Take thejth derivative of formulation (21) or equivalently (6) with respectjtg and letv; = agnug(y) to
get

10w DIIG + K185, Vug (g = k@), f™(y), 05, ui(y) + (05wl (y), ) ui(y))-
Therefore,

A | -
(1+ 2 ) 103,636l < K10}, 770l + 104, 4~ 0l
p

which upon summation yields
. ) m 1 7
104,55Vl < 410}, /@ lewraond (1573 )
Thus,
105, wit )llo < €2 (1= e C/D) L4 £ () leo,rrzmp it
Letting C' = C7 (1 - e*(km/cz%)) L+ [1f () lleo,7;22())] we get (30). O

We will immediately obtain the following theorem, whose proof closely follows the proof of Theorem 4.4 in [66].

Theorem 5.1(Theorem 4.4 in [66]) Under assumption (29), the solutiefj’ (x, y,,, y,) considered as a function of
yn, admits an analytic extensiatf (x, z, ;. ), z € C, in the region of complex plane

Y(Tp,tn) :i={2z € C:dist(z,T,) < 1,},

where0 < 1, < 1/v,.

5.3 Convergence Analysis

It can be noted that the total errer* = v™ — u’, can be written as™ = (u™ — uy') + (ug’ — ug',). Therefore,

one can expresa priori estimates for the erra™ in the L?(D) @ L2(T") norm in terms of the corresponding error
estimates fofu™ —ug') and(ug' —uy,). One can estimate the interpolation erfef — 7' ) by repeating the same
procedure as in [22], using the analyticity result of Theorem 5.1. Please refer to Section 4 of [22] for more details.

Theorem 5.2(Theorem 4.1 in [22]) Under assumption (29), there exist positive constapis = 1,...,r, andC
that are independent @, d, andp such that

Hugl - ug?p”L"’(D)@L%(F) <C Z Bn(pn) eXP(—bnpg,")a (31)

n=1

where
en = Bn = ]-7

27, r,|2

{ 80 =5 Bu=0(/mm),

if I",, is bounded, and
bn = Tn6n7

if I",, is unbounded, withr,, being the minimum distance betwdénand the nearest singularity in the complex plane,
as defined in theorem 5.1, ang is defined in assumption (28).
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Remark 5.1. For an isotropic full tensor-product approximation, i.¢;, = po = --- = p, = p, the number of
collocation pointsd is given by® = (1 + p)". Thus, one can easily obtain the following error bound with respect to
O; see [66]:

m m < CO~bmin/T if T isbounded,
Il 7ud’p”L2(D)®L%(F) - CObmin/27 if T isunbounded,

wherebyi, = min{by, ba,...,b.} as in Theorem 5.2. The constafitdoes not depend on and b,,;,. Note that

for large values of-, sparse grid stochastic collocation methods [26, 72], specially adaptive and anisotropic ones,

e.g., [25, 27] are more effective in dealing with the curse of dimensionality evident in the inequality (32). This inequal-
ity shows that as the dimensienincreases, the convergence becomes slower. The analyticity result (Theorem 5.1)
combined with the analysis in [25—-27, 72], can easily lead to the derivation of error bounds for sparse grid approxi-
mations. For instance, the error in an isotropic Smolyak approximation [26, 72] with a total sfarse grid points,

can be bounded by

(32)

C @ bmin/(1+log(2r))

Here, we will give a short description of the isotropic Smolyak algorithm. More detailed information can be found in

[26, 73]. Assume, = ps = --- = p, = p. Forr = 1, let{Z; ;},=12,... be a sequence of interpolation operators
given by Eq. (8). Defindg =7, o =0andA; =7, ; — Z; ;—1. Now forr > 1, let
Alg,r) = > A, @A, (33)

0<ii+is+...4+ir < q
whereq is a non-negative integer(q, r) is the Smolyak operator, andis known as the sparse grid level.
Now we need to find error bounds for the deterministic part of our algorithm inLt{@®) @ L2(I") norm,
i.e.,u™ —ul". First, note that according to (28), the joint density funciidsehaves like a Gaussian kernel at infinity.

Therefore, in practice we are literally dealing with a compact random paramefer sate we can approximaié
with a large enough compact set. So from now on we assumé'tisatompact. We know thdt C Uy rer Bn(y')-

Thus, using the compactness assumptiofi dhere exisf’ € N, and{’y’}X, c I'such thal’ = Ui:1 By (ty")NT.

Letting’T’ = By (‘y’) N T, we can writel’ = Ui:1

Theorem 5.3. Under the Lipschitz continuity (see Remark 4.2) assumption, there exist corstantsA such that
[u™ = w2 (pyorzry < Cn+Ch™ + Ck + CEVAA. (34)

Proof. Let us first integrate the the last term in estimate (27). Thus, we have

2
(y,y' () 1/2

/p Clhy}ym |72 > A'O) o(y)dy

J=d(y,y'(y))+1

y,y' ()

—E2 [y e Y MO Devdy

J=d(y,y’(y)+1

T l(iy/
=Ky ('y') /Cy, (y)dy.
i=1 \j=d(’y’)+
Now letting A; = Z;(;’;/(Zy,)H A;(y’), and assuming? = max;—;,_r{A;}, we get the following upper bound for
the above expression:
kMMZ/C% p(y)dy = K202 [ Cly,y'(y))2(y)dy.
T
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Letting C? = Jr C(y,y'(y))?p(y)dy, we get the last term in (34). The first three terms of (34) can also be easily
computed by integrating the first three terms of (27). We will get the same expressions for the carstastisove.
O

Remark 5.2. Note that due to the way that the POD method works, the conAtanso small that thé:'/* term has
a very little effect on the error.

Combining (31) and (34), we will finally get the following total error estimate.

Theorem 5.4. Under assumption (29) and the Lipschitz continuity (see Remark 4.2) assumption , there exist positive

constantg” and A that are independent &, k,n, andp, and there exist constankg,n = 1,...,r, such that
[u™ = uf ol 2 (pyorz ) < Cn+Ch + Ck 4+ CEY*A +C > Bu(pn) exp(—bupy™), (35)
n=1

wheref,,, ., andp,, are the same as the ones in Theorem 5.2.

Remark 5.3. In some cases, one might be interested in estimating the expectation errgiZi”, — w7 || L2 (p)-
This can be easily achieved by observing that

[E[u™ — Ug,"p]||2L2(D) < Jlu™ = ug'pllrz(pyerz (r)- (36)

6. NUMERICAL EXPERIMENTS

In this section, we provide a computational example to illustrate the advantages of multifidelity stochastic collocation
method. Specifically, we consider problem (1) with= (0, 1)? € R?, T' = 1, and the forcing term being given by

flt,x,w) =10+ ¢ Z V(W) sin(nmz).

n=1

The real-valued random variablgs,n = 1,...,r, are supposed to be independent and have uniform distributions
U(0,1). In the following, we letr = 4. We employ the sparse grid stochastic collocation method introduced in
Remark 5.1 with sparse grid lewel= 8. We use the Clenshaw-Curtis abscissas (see [74]) as collocation points. These
abscissas are the extrema of Chebyshev polynomials. We divide the spatial dorm@m32 x 32 small squares

with side lengthAz = Ay = 1/32, and then we connect the diagonals of the squares to divide each square into two
triangles. These triangles consist the triangulafign with » = /2/32. Takek = 0.1 as the time step increment.

We use all of the time steps to form the snapshots. We employ six POD basis functions. In the following, we compare
the solution resulting from a regular isotropic sparse grid stochastic collocation method which only uses the finite
element method, with the hybrid multifidelity method proposed in this paper which employs both finite element
and POD methods. In Fig. 1, we compare the expected values resulting from the multifidelity method and a regular
sparse grid stochastic collocation method. We take 0.1. Recall that for eacly € T" our method searches tie
neighborhood of to check whether for somg’ € B, (y) problem (5) is already solved. If a nearby problemygt

is found to be solved by the finite element method, our algorithm uses this information to create POD basis functions
and solves problem (5) gtusing Galerkin-POD method, which is computationally much cheaper than finite element.
Moreover, Fig. 2 compares variances of solutions resulting from the two methods.

Figures 3 and 4, show the convergence patterns of expectations and variances of solutions with nggard to
respectively. These results validate our theoretical estimates of previous sections in the sense that they justify the
presence of th€'n term in Theorem 5.4. We are actually comparing our multifidelity method with a regular sparse
grid stochastic method. Note that for small enougthess than the shortest distance between the collocation points)
we get the regular sparse grid method back. Therefore the error is zero for sucha.small

Figure 5 demonstrates how the number of times that the finite element code is employed increases with respect to
a decrease in.

Volume 4, Number 3, 2014



236 Raissi & Seshaiyer

Finite Element Finite Element & POD

Expected Value

Absolute Error x10™

3
S
m 2
c
o
g 1
(8]
(0]
o
! 0

0 0.2 0.4 0.6 0.8 1 0 y

X

FIG. 1: Comparison of expected values (bottom) resulting from a regular sparse grid method (top left) and the multi-
fidelity method withn = 0.1 (top right).
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FIG. 2: Comparison of variances of solutions (bottom) resulting from a regular sparse grid method (top left) and the
multi-fidelity method withn = 0.1 (top right).
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FIG. 3: Convergence pattern of expected values of solutions with respgct to
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FIG. 4: Convergence pattern of variances of solutions with respegt to

Table 1 summarizes the results when= 0.1. In this case, the number of times that the finite element code is
utilized by the multifidelity method i8745. Compared it tal8,946, the number of times that a regular sparse grid
calls the finite element code.
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FIG. 5: The number of times that the finite element code is employed as a functipn of

TABLE 1: Relative errors when = 0.1

Relative error inL, norm | Relative error inL., norm

Expected value 3.6 x 1074 4.8 x 1074
Variance 1.2 x 1072 2.0 x 1072

Table 2 is just another way of presenting the data depicted in Figs. 3-5.

Remark 6.1. This method with some slight improvements using sensitivity analysis of POD basis functions is applied
to the stochastic Burgers equation driven by Brownian motion in [75]. Similar performances are observed in that
paper.

7. CONCLUDING REMARKS

In this paper, we have proposed a method to enhance the performance of stochastic collocation methods using proper
orthogonal decomposition. We have carried out detailed error analyses of the proposed multifidelity stochastic collo-
cation methods for parabolic partial differential equations with random forcing terms. We illustrated and supported
our theoretical analyses with a numerical example. The analysis of this paper can be simply generalized to parabolic
partial differential equations with random initial conditions and random coefficients. Our method only requires a well-
posedness argument of the corresponding deterministic equations. Future works in this area can include applications
of this method to partial differential equations in fluid mechanics, and proving error estimates for these equations.
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TABLE 2: Relative errors and the number of times that the finite element code is employed for different vajues of

n # FE calls | Expectationl, error | Expectationl.., error | VariancelL, error | VarianceL, error
4 1 1.72E-02 2.34E-02 7.25E-02 8.72E-02
2 3 3.27E-02 4.35E-02 2.99E-01 4.84E-01
1 5 1.95E-02 2.33E-02 1.50E-01 2.45E-01
1/2 36 1.63E-02 1.85E-02 1.21E-01 1.38E-01
(1/2)2 92 4.26E-03 5.43E-03 9.27E-02 1.02E-01
(1/2)3 306 4,55E-03 5.89E-03 1.31E-02 1.68E-02
(1/2)* 621 2.64E-03 2.98E-03 3.91E-02 6.21E-02
(1/2)% 1866 2.81E-03 3.55E-03 2.88E-02 3.86E-02
(1/2)¢ 3743 4,96E-04 7.09E-04 6.23E-03 8.00E-03
(1/2)7 4129 8.58E-04 1.19E-03 8.00E-03 1.07E-02
(1/2)8 9026 4,42E-04 5.63E-04 3.22E-03 5.39E-03
(1/2)° 9026 3.35E-04 5.61E-04 2.18E-03 3.33E-03
(1/2)10 13442 2.76E-04 4.69E-04 1.15E-03 1.49E-03
(1/2)1 13442 2.65E-04 459E-04 1.08E-03 1.22E-03
(1/2)'2 16642 2.25E-04 4.04E-04 4.18E-04 5.15E-04
(1/2)13 16642 2.29E-04 4.02E-04 5.75E-04 7.78E-04
(1/2) 18434 1.54E-04 2.75E-04 1.89E-04 2.71E-04
(1/2)15 18434 1.52E-04 2.71E-04 7.42E-05 9.43E-05
(1/2)%6 18946 0 0 0 0
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