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Optimal experimental design (OED) seeks experiments expected to yield the most useful data for some purpose. In

practical circumstances where experiments are time-consuming or resource-intensive, OED can yield enormous sav-

ings. We pursue OED for nonlinear systems from a Bayesian perspective, with the goal of choosing experiments that

are optimal for parameter inference. Our objective in this context is the expected information gain in model parame-

ters, which in general can only be estimated using Monte Carlo methods. Maximizing this objective thus becomes a

stochastic optimization problem. This paper develops gradient-based stochastic optimization methods for the design of

experiments on a continuous parameter space. Given a Monte Carlo estimator of expected information gain, we use in-

finitesimal perturbation analysis to derive gradients of this estimator. We are then able to formulate two gradient-based

stochastic optimization approaches: (i) Robbins-Monro stochastic approximation, and (ii) sample average approxima-

tion combined with a deterministic quasi-Newton method. A polynomial chaos approximation of the forward model

accelerates objective and gradient evaluations in both cases. We discuss the implementation of these optimization meth-

ods, then conduct an empirical comparison of their performance. To demonstrate design in a nonlinear setting with

partial differential equation forward models, we use the problem of sensor placement for source inversion. Numerical

results yield useful guidelines on the choice of algorithm and sample sizes, assess the impact of estimator bias, and

quantify tradeoffs of computational cost versus solution quality and robustness.

KEY WORDS: stochastic approximation, sample average approximation, polynomial chaos, infinitesimal
perturbation analysis, optimal experimental design, mutual information, Bayesian inference

1. INTRODUCTION

Experimental data play a crucial role in the development of models–and the advancement of scientific understanding–
across a host of disciplines. Some experiments are more useful than others, however, and a careful choice of exper-
iments can translate to enormous savings of time and financial resources. Traditional experimental design methods,
such as factorial and composite designs, are largely used asheuristics for exploring the relationship between input
factors and response variables.Optimal experimental design, on the other hand, uses a model to guidethe choice
of experiments for a particular purpose, such as parameter inference, prediction, or model discrimination. Optimal
design has seen extensive development for linear models endowed with Gaussian distributions [1]. Extensions to non-
linear models are often based on linearization and Gaussianapproximations [2–4], as analytical results are otherwise
impractical or impossible to obtain. With advances in computational power, however, optimal experimental design for
nonlinear systems can now be tackled directly using numerical simulation [5–11].

This paper pursues nonlinear experimental design from a Bayesian perspective (e.g., [12]). The Bayesian statistical
approach [13, 14] provides a rigorous foundation for inference from noisy, indirect, and incomplete data and a natural
mechanism for incorporating physical constraints and heterogeneous sources of information. We focus on experiments
described by a continuous design space, with the goal of choosing experiments that are optimal for Bayesian parameter
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inference. A useful objective function for this purpose is theexpected information gainin model parameters [15, 16]—
or equivalently, themutual informationbetween parameters and observables, conditioned on the design variables. This
objective can be derived in a decision theoretic framework,using the Kullback-Leibler divergence from posterior to
prior as a utility function [4]. From the numerical perspective, however, it is a complicated quantity. In general, it must
be approximated using a Monte Carlo method [6, 17]. Consequently, only noisy estimates of the objective function
are available and the optimal design problem becomes a stochastic optimization problem.

There are many approaches for solving continuous optimization problems with stochastic objectives. While some
do not require the direct evaluation of gradients (e.g., Nelder-Mead [18], Kiefer-Wolfowitz [19], and simultaneous
perturbation stochastic approximation [20]), other algorithms can use gradient evaluations to great advantage. Broadly,
these algorithms involve either stochastic approximation(SA) [21] or sample average approximation (SAA) [22],
where the latter approach must also invoke a gradient-baseddeterministic optimization algorithm. Hybrids of the two
approaches are possible as well. In either case, for model-based experimental design, one must employ gradients of the
information gain objective described above. This objective function itself involves nested integrations over possible
model outputs and over the input parameter space, where the model output may be a functional of the solution of a
partial differential equation. In many practical cases, the model may be essentially a black box; while in other cases,
even if gradients can be evaluated with adjoint methods, using the full model to evaluate the expected information
gain or its gradient is computationally prohibitive. Previous work [11] has addressed these difficulties by constructing
polynomial surrogates for the the model output, i.e., polynomial chaos expansions [23–29] that capture dependence
on both uncertain parameters and design variables.

The main contributions of this paper are as follows. First, we show how to use infinitesimal perturbation analysis
to derive gradients of a Monte Carlo estimator of the expected information gain. When the estimator incorporates a
polynomial surrogate, we show how this surrogate can be readily extended to provide analytical gradient estimates. We
then conduct a systematic empirical comparison of two gradient-based stochastic optimization approaches for nonlin-
ear experimental design: (1) Robbins-Monro (RM) stochastic approximation, and (2) sample average approximation
combined with a deterministic quasi-Newton method. The comparison is performed in the context of a physics-based
sensor placement application, where the forward model is given by a partial differential equation. From the numerical
results, we are able to assess the impact of estimator bias, extract useful guidelines on the choice of algorithm and
sample sizes, and quantify tradeoffs of computational costversus solution quality and robustness.

The RM algorithm [30] is the original and perhaps most widelyused stochastic approximation method, and has
become a prototype for many subsequent algorithms. It involves an iterative update that resembles steepest descent,
except that it uses stochastic gradient information. Sample average approximation (SAA) (also known as the retro-
spective method [31] or the sample-path method [32]) is a more recent approach, with theoretical analysis initially
appearing in the 1990s [22, 32, 33]. Convergence rates and stochastic bounds, although useful, do not necessarily re-
flect empirical performance under finite computational resources and with imperfect numerical optimization schemes.
To the best of our knowledge, extensive numerical testing ofSAA has focused on stochastic programming problems
with special structure (e.g., linear programs with discrete design variables) [34–38]. While numerical improvementsto
SAA have seen continual development (e.g., estimators of optimality gap [39, 40] and sample size adaptation [41, 42]),
the practical behavior of SAA in more general optimization settings is largely unexplored. The numerical assessment
of SAA conducted here, in a nonlinear and continuous variable design setting, is thus expected to be of practical
interest.

SAA is frequently compared to stochastic approximation methods such as RM. For example, [43] suggests that
SAA is more robust than SA because of sensitivity to step sizechoice in the latter. On the other hand, variants of
SA have been developed that, for certain classes of problems(e.g., [44]), reach solution quality comparable to that of
SAA in substantially less time. The comparison of SA and SAA presented here focuses on their performance in the
Bayesian experimental design problem. We do not aim to identify one approach as superior to the other; instead, we
will simply illustrate the differences between the two algorithms in this context and provide some selection guidelines
based on their properties.

This paper is organized as follows. Section 2 introduces optimal Bayesian experimental design (Section 2.1)
and extracts the underlying stochastic optimization problem (Section 2.2), then presents the RM (Section 2.2.1) and
SAA-BFGS (Section 2.2.2) algorithms. The challenge of evaluating gradient information appropriate to each of these
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algorithms is described in Section 2.3. Section 3 and Section 4 describe how to obtain gradients (or gradient estimators)
for the experimental design objective using polynomial chaos expansions and infinitesimal perturbation analysis.
Section 5 then analyzes the numerical performance of RM and SAA-BFGS on an optimal sensor placement problem
involving contaminant diffusion. Conclusions on the algorithms and the relative strengths of SA and SAA for optimal
experimental design are provided in Section 6.

2. OPTIMAL BAYESIAN EXPERIMENTAL DESIGN

2.1 Background

We are interested in choosing the “best” experiments1 from a continuously parametrized design space, for the purpose
of inferring model parameters from noisy and indirect observations. In other words, we seek experiments that are
optimal for parameter inference (in a sense to be precisely defined below), with inference performed in a Bayesian
setting. In the problems considered here, the mean observations are nonlinear functions of the model parameters, and
the observations and model parameters are continuous random variables.

Bayes’ rule describes the parameter update process:

fΘ|Y,d(θ|y,d) =
fY|Θ,d(y|θ,d)fΘ|d(θ|d)

fY|d(y|d)
. (1)

HereΘ represents the uncertain parameters of interest,Y the observations, andd the design variables. Like the
observations and parameters, the design parameters arecontinuous. Also fΘ|d is the prior density,fY|Θ,d is the
likelihood function,fΘ|Y,d is the posterior density, andfY|d is the evidence. It is reasonable to assume that prior
knowledge onΘ does not vary with the design choice, leading to the simplificationfΘ|d(θ|d) = fΘ(θ).

Taking the decision theoretic approach proposed by Lindley[15, 16], we use the Kullback-Leibler (KL) diver-
gence [45, 46] from the posterior to the prior as a utility function, and take its expectation under the prior predictive
distribution of the data to obtain anexpected utilityU(d):

U(d) =

∫

Y

∫

H

fΘ|Y,d(θ|y,d) ln

[

fΘ|Y,d(θ|y,d)

fΘ(θ)

]

dθ fY|d(y|d) dy (2)

= EY|d

[

DKL

(

fΘ|Y,d(·|Y,d)||fΘ(·)
)]

.

HereH is the support offΘ(θ) andY is the support offY|d(y|d). Because the observationY cannot be known
before the experiment is performed, taking the expectationover the prior predictivefY|d lets the resulting utility
function reflect the information gainon average, over all anticipated outcomes of the experiment. The KL divergence
may be understood as information gain: larger KL divergencefrom posterior to prior implies that the dataY decrease
entropy inΘ by a larger amount, and hence are more informative for parameter inference. The expected utilityU(d)
is thus theexpected information gaindue to an experiment performed at conditionsd, which is equivalent to the
mutual informationbetween the parametersθ and the observablesy conditioned ond. A more detailed derivation
and discussion can be found in [11].

Typically, the expected utility in (2) has no closed form (even if the predictive mean of the data is, for example,
a polynomial function ofθ). Instead, it must be approximated numerically. By applying Bayes’ rule to the quantities
inside and outside the logarithm in (2), and then introducing Monte Carlo approximations for the resulting integrals,
we obtain the nested Monte Carlo estimator proposed by Ryan [6]:

U(d) ≈ ÛN,M(d, θs,ys) ≡
1

N

N
∑

i=1







ln
[

fY|Θ,d(y(i)|θ(i),d)
]

− ln





1

M

M
∑

j=1

fY|Θ,d(y(i)|θ̃(i,j)
,d)











, (3)

1These design choices will be made all-at-once; this setup corresponds to batch oropen-loopdesign. In contrast, sequential or
closed-loopdesign allows the results of one set of experiments to guide the next set. Rigorous approaches to optimalclosed-loop
design are more challenging, and will not be tackled in this paper.
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whereθs ≡
{

θ
(i)

}

∪
{

θ̃
(i,j)

}

, i = 1 . . .N , j = 1 . . .M , are i.i.d. samples from the priorfΘ; andys ≡
{

y(i)
}

,

i = 1 . . .N , are independent samples from the likelihoodsfY|Θ,d(·|θ(i),d). The variance of this estimator is ap-
proximatelyA(d)/N + B(d)/NM and its bias is (to leading order)C(d)/M [6], whereA, B, andC are terms
that depend only on the distributions at hand. While the estimatorÛN,M is biased for finiteM , it is asymptotically
unbiased.

Finally, the expected utility must be maximized over the design spaceD to find the optimal experiment(s):

d∗ = arg max
d∈D

U(d). (4)

SinceU can only be approximated by Monte Carlo estimators such asÛN,M , optimization methods for stochastic
objective functions are needed.

2.2 Stochastic Optimization

In this section we describe two gradient-based stochastic optimization approaches: Robbins-Monro (RM) stochastic
approximation, and sample average approximation with the Broyden-Fletcher-Goldfarb-Shanno method. Both ap-
proaches require some flavor of gradient information, but they do not use the exact gradient ofU(d). Calculating the
latter is generally not possible, given that we only have a Monte Carlo estimator (3) ofU(d).

For simplicity, in this section only (Section 2.2), we will use a more generic notation to describe the stochas-
tic optimization problem at hand. This will allow the essential ideas to be presented before tackling the additional
complexities of the expected information gain estimator above. The problem to be solved is of the form

x∗ = argmin
x∈X

{

h(x) = EW

[

ĥ(x, W )
]}

, (5)

wherex is the design variable,W is the (generally design-dependent) “noise” random variable, andĥ(x, w) is an
unbiased estimator of the unavailable objective functionh(x).

2.2.1 Robbins-Monro (RM) Stochastic Approximation

The iterative update of the RM method is

xk+1 = xk − akĝ(xk, w′), (6)

wherek is the iteration index and̂g(xk, w′) is an unbiased estimator of the gradient (with respect tox) of h(x)

evaluated atxk. In other words,EW ′ [ĝ(x, W ′)] = ∇xh(x), but ĝ is not necessarily equal to∇ĥ. Also, W ′ andW
may, but need not, be related. The gain sequenceak should satisfy the following properties:

∞
∑

k=0

ak = ∞ and

∞
∑

k=0

a2
k < ∞. (7)

One natural choice, used in this study, is the harmonic step size sequenceak = β/k, whereβ is some appropriate
scaling constant. For example, in the diffusion problem of Section 5,β is chosen to be 1.0 since the design space is
[0, 1]2. With various technical assumptions onĝ andg, it can be shown that RM converges to the exact solution of (5)
almost surely [21].

Choosing the sequenceak is often viewed as the Achilles’ heel of RM, as the algorithm’s performance can be very
sensitive to step size. We acknowledge this fact and do not downplay the difficulty of choosing an appropriate gain
sequence, but we will try to show that there exist logical approaches to selectingak that yield reasonable performance.
More sophisticated strategies, such as search-then-converge learning rate schedules [47], adaptive stochastic stepsize
rules [48], and iterate averaging methods [21, 49], have been developed and successfully demonstrated in applications.
For simplicity, however, we will use only the harmonic step size sequence in this paper.
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We will also use relatively simple stopping criteria for theRM iterations: the algorithm will be terminated when
changes inxk stall (e.g.,||xk − xk−1|| falls below some designated tolerance for five successive iterations) or when a
maximum number of iterations has been reached (e.g., 50 iterations in the numerical experiments of Section 5.2.2.)

2.2.2 Sample Average Approximation (SAA)

Transformation to design-independent noise. The central idea of sample average approximation is to reduce the
stochastic optimization problem to a deterministic problem, by fixing the noise throughout the entire optimization
process. In practice, if the noiseW is design-dependent, it is first transformed to a design-independent random variable
by moving all the design dependence into the functionĥ. (An example of this transformation is given in Section 4.)
The noise variables at differentx then share a common distribution, and a common set of realizations is employed at
all values ofx.

Such a transformation is always possible in practice, sincethe random numbers in any computation are funda-
mentally generated from uniform random (or really pseudorandom) numbers. Thus one can always transformW
back into these uniform random variables, which are of course independent ofx.2 For the remainder of this section
(Section 2.2.2) we shall, without loss of generality, assume thatW is independent ofx.

Reduction to a deterministic problem. SAA approximates the true optimization problem in (5) with

x̂s = argmin
x∈X

{

ĥN (x, ws) ≡
1

N

N
∑

i=1

ĥ(x, wi)

}

, (8)

wherex̂s and ĥN (x̂s, ws) are the optimal design and objective values under a particular set ofN realizations of
the random variableW , ws ≡ {wi}N

i=1. The sameset of realizations is used for different values ofx during the
optimization process, thus making the minimization problem in (8) deterministic. (One can view this approach as an
application of common random numbers.) A deterministic optimization algorithm can then be chosen to findx̂s as an
approximation tox∗.

Estimates ofh(x̂s) can be improved by usinĝhN ′(x̂s, ws′ ) instead of̂hN(x̂s, ws), whereĥN ′(x̂s, ws′ ) is com-
puted from a larger set of realizationsws′ ≡ {wj}N ′

j=1 with N ′ > N , in order to attain a lower variance. Finally,
multiple (sayT ) optimization runs are often performed to obtain a samplingdistribution for the optimal design values
and the optimal objective values, i.e.,x̂t

s andĥN(x̂t
s, w

t
s), for t = 1 . . . T . The setswt

s are independently chosen for
each optimization run, but remain fixed within each run. Under certain assumptions on the objective function and the
design space, the optimal design and objective estimates inSAA generally converge to their respective true valuesin
distributionat a rate of1/

√
N [22, 33].3

For the solution of a particular deterministic problem̂xt
s, stochastic bounds on the true optimal value can be

constructed by estimating the optimality gaph(x̂t
s)−h(x∗) [39, 40]. The first term can simply be approximated using

the unbiased estimator̂hN ′(x̂t
s, w

t
s′) sinceEWs′

[

ĥN ′(x̂t
s, Ws′ )

]

= h(x̂t
s). The second term may be estimated using

the average of the approximate optimal objective values across theT replicate optimization runs (based onwt
s, rather

thanwt
s′ ):

h̄N =
1

T

T
∑

t=1

ĥN (x̂t
s, w

t
s). (9)

2One does not need to go all the way to the uniform random variables; any higher-level “transformed” random variable, as long as
it remains independent ofx, suffices.
3More precise properties of these asymptotic distributionsdepend on properties of the objective and the set of optimal solutions
to the true problem. For instance, in the case of a singleton optimum x∗, the SAA estimateŝhN (x̂s, ·) converge to a Gaussian
with variance VarW [ĥ(x∗, W )]/N . Faster convergence to the optimal objective value may be obtained when the objective satisfies
stronger regularity conditions. The SAA solutionsx̂s are not in general asympotically normal, however. Furthermore, discrete
probability distributions lead to entirely different asymptotics of the optimal solutions.
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This is a negatively biased estimator and hence a stochasticlower bound onh(x∗) [39, 40, 50].4,5 The difference
ĥN ′(x̂t

s, w
t
s′) − h̄N is thus a stochastic upper bound on the true optimality gaph(x̂t

s) − h(x∗). The variance of this
optimality gap estimator can be derived from the Monte Carlostandard error formula [34]. One could then use the
optimality gap estimator and its variance to decide whethermore runs are required, or which approximate optimal
designs are most trustworthy.

Pseudocode for the SAA method is presented in Algorithm 1. Atthis point, we have reduced the stochastic opti-
mization problem to a series of deterministic optimizationproblems; a suitable deterministic optimization algorithm
is still needed to solve them.

Algorithm 1: SAA method in pseudocode.

Set optimality gap toleranceη and number of replicate optimization runsT ;
t = 1;
while optimality gap estimate> η andt ≤ T do

Sample the setwt
s = {wt

i}N
i=1;

Perform a deterministic optimization run and findx̂t
s (see Algorithm 2);

Sample the larger setwt
s′ = {wt

j}N ′

j=1 whereN ′ > N ;

ComputêhN ′(x̂t
s, w

t
s′) =

1

N ′

N ′

∑

j=1

ĥ
(

x̂t
s, w

t
j

)

;

Estimate the optimality gap and its variance;
t = t + 1;

end
Output the sets{x̂t

s}T
t=1 and{ĥN ′(x̂t

s, w
t
s′ )}T

t=1 for post-processing;

BFGS method. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [51]is a gradient-based method for solv-
ing deterministic nonlinear optimization problems, widely used for its robustness, ease of implementation, and ef-
ficiency. It is a quasi-Newton method, iteratively updatingan approximation to the (inverse) Hessian matrix from
objective and gradient evaluations at each stage. Pseudocode for the BFGS method is given in Algorithm 2. In the
present implementation, a simple backtracking line searchis used to find a stepsize that satisfies the first (Armijo)
Wolfe condition only. The algorithm can be terminated according to many commonly used criteria: for example,
when the gradient stalls, the line search stepsize falls below a prescribed tolerance, the design variable or function
value stalls, or a maximum allowable number of iterations orobjective evaluations is reached. BFGS is shown to
converge super-linearly to a local minimum if a quadratic Taylor expansion exists near that minimum [51].

The limited memory BFGS (L-BFGS) [51] method can also be usedwhen the design dimension becomes very
large (e.g., more than104), such that the dense inverse Hessian cannot be stored explicitly.

2.3 Application to Optimal Design

The main challenge in applying the aforementioned stochastic optimization algorithms to optimal Bayesian experi-
mental design is the lack of readily available gradient information. For RM, we need anunbiased estimator of the
gradientof the expected utility, i.e.,̂g in (6). For SAA-BFGS, we need thegradient of the finite-sample Monte Carlo
approximationof the expected utility, i.e.,∇ĥN (·, wt

s).
We address these needs by introducing two concepts:

4Short proof from [50]: For anyx ∈ X , we have thatEWs

[

ĥN (x, Ws)
]

= h(x), and that̂hN (x,wt

s) ≥ minx′∈X ĥN (x′, wt

s).

Thenh(x) = EWs

[

ĥN (x,Ws)
]

≥ EWs

[

minx′∈X ĥN (x′, Ws)
]

= EWs

[

ĥN (x̂t

s, Ws)
]

= EWs

[

h̄N

]

.
5The bias decreases monotonically withN [39].
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Algorithm 2: BFGS algorithm in pseudocode. In this context,ĥN (x, wt
s) is the deterministic objective function

we want to minimize (as a function ofx).

Initialize starting pointx0, inverse Hessian approximationH0, gradient termination toleranceε;
Initialize any other termination conditions and parameters;
k = 0;

while ||∇ĥN (xk, wt
s)|| > ε and other termination conditions are not metdo

Compute search directionpk = −Hk∇ĥN (xk, wt
s);

Find acceptable stepsizeαk via line search;
Update positionxk+1 = xk + αkpk;

Define vectorssk = xk+1 − xk anduk = ∇ĥN (xk+1, w
t
s) −∇ĥN (xk, wt

s) ;

Update inverse Hessian approximationHk+1 =

(

I − skuT
k

sT
k uk

)

Hk

(

I − uksT
k

uT
k sk

)

+
sksT

k

sT
k uk

;

k = k + 1;
end
Outputx̂t

s = xk;

1. A simple surrogate model, based onpolynomial chaosexpansions (see Section 3), replaces the often computa-
tionally-intensive forward model. The purpose of the surrogate is twofold. First, it allows the nested Monte
Carlo estimator (3) to be evaluated in a computationally tractable manner. Second, its polynomial form allows
the gradient of (3),∇ĥN (·, wt

s), to be derived analytically. These gains come at the expenseof introducing
additional error via the polynomial approximation of the original forward model, however. In other words,given
a surrogate for the forward model and the resulting expectedinformation gain, we can derive exact gradients of
a Monte Carlo approximation of this expected information gain, and use these gradients in SAA.

2. Infinitesimal perturbation analysis(see Section 4) applied to (2), along with the estimator in (3) and the poly-
nomial surrogate model, allows the analytical derivation of an unbiased gradient estimatorĝ, as required for the
RM approach.

3. POLYNOMIAL CHAOS SURROGATES

3.1 Background

This section introduces the first of two computational toolsused to address the challenges described in Section 2.3.
Polynomial expansions will be used to mitigate the cost of repeated forward model evaluations. Later (see Section 4)
they will also be used to help evaluate appropriate gradientinformation for stochastic optimization methods.

Mathematical models of the experiment enter the inference and design formulation through the likelihood function
fY|Θ,d. For example, a simple likelihood function might allow for an additive discrepancyE between experimental
observations and model predictions

Y = G(Θ,d) + E. (10)

HereG(θ,d) is the “forward model” describing the experiment; it is a function that maps both the design variables
and the parameters into the data space. The discrepancyE is often taken to be a Gaussian random variable, but is
by no means limited to this; we will usefE to denote its probability density. Computationally intensive forward
models can render Monte Carlo estimation of the expected information gain impractical. In particular, drawing a
sample fromfY|Θ,d(y|θ,d) requires evaluatingG at a particular(θ,d). Evaluating the densityfY|Θ,d(y|θ,d) =
fE(y − G(θ,d)) again requires evaluatingG.

To make these calculations tractable, one would like to replaceG with a cheaper “surrogate” model that is accu-
rate over the entire prior supportH and the entire design spaceD. Many options exist, ranging from projection-based
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model reduction [52, 53] to spectral methods based on polynomial chaos (PC) expansions [23–29, 54]. The latter ap-
proaches do not reduce the internal physics of the deterministic model; rather, they exploit regularity in the dependence
of model outputs on uncertain input parameters and design variables.

Polynomial chaos has seen extensive use in a range of engineering applications (e.g., [55–58]) including parameter
estimation and inverse problems (e.g., [59–61]). More recently, it has also been used in open-loop optimal Bayesian
experimental design [10, 11], with excellent accuracy and multiple order-of-magnitude speedups over direct evalua-
tions of forward model. Unlike the present work, however, our earlier study [11] used only gradient-free stochastic
optimization methods (Nelder-Mead and simultaneous perturbation stochastic approximation).

3.2 Formulation

Any random variableZ with finite variance can be represented by an infinite series

Z =

∞
∑

|i|=0

aiΨi(Ξ1, Ξ2, . . .), (11)

wherei = (i1, i2, . . .) , ij ∈ N0, is an infinite-dimensional multi-index;|i| = i1 + i2 + . . . is thel1 norm;ai ∈ R are
the expansion coefficients;Ξi are independent random variables; and

Ψi(Ξ1, Ξ2, . . .) =

∞
∏

j=1

ψij
(Ξj) (12)

are multivariate polynomial basis functions [25]. Hereψij
is an orthogonal polynomial of orderij in the variableΞj ,

where orthogonality is with respect to the density ofΞj ,

EΞ [ψm(Ξ)ψn(Ξ)] =

∫

F

ψm(ξ)ψn(ξ)fΞ(ξ) dξ = δm,nEΞ

[

ψ2
m(Ξ)

]

, (13)

andF is the support offΞ(ξ). The expansion (11) is convergent in the mean-square sense [62]. For computational
purposes, the infinite sum in (11) must be truncated to some finite stochastic dimensionns and a finite number of
polynomial terms. A common choice is the “total-order” truncation|i| ≤ p, but other truncations that retain fewer
cross terms, a larger number of cross terms, or anisotropy among the dimensions are certainly possible [54].

In the optimal Bayesian experimental design context, the model outputs depend on both the parameters and the
design variables. Constructing a new polynomial expansionat each value ofd encountered during optimization is
generally impractical. Instead, we can construct asinglePC expansion for each component ofG, depending jointly on
Θ andd [11]. To proceed, we assign one stochastic dimension to eachcomponent ofΘ and one to each component
of d. Further, we assume an affine transformation between each component ofd and the correspondingΞi; any
realization ofd can thus be uniquely associated with a vector of realizations ξi. Since the design variables will
usually be supported on a bounded domain (e.g., inside some hyper-rectangle), the correspondingΞi are endowed with
uniform distributions. The associated univariateψi are thus Legendre polynomials. These distributions effectively
define a uniform weight function over the design spaceD that governs where theL2-convergent PC expansions
should be most accurate.6

Constructing the PC expansion involves computing the coefficientsai. This computation generally can proceed
via two alternative approaches, intrusive and nonintrusive. The intrusive approach results in a new system of equations
that is larger than the original deterministic system, but it needs be solved only once. The difficulty of this latter step
depends strongly on the character of the original equations, however, and may be prohibitive for arbitrary nonlinear

6In the present context, it is appropriate to viewd as a deterministic design variable. Since the stochastic optimization algorithms
used later all involve some level of randomness, however, the d values encountered during optimization may also be viewed as
realizations from some probability distribution. This distribution, if known, could replace the uniform distribution and define a
more efficient weightedL2 norm; however, it is almost always too complex to extract in practice.
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systems. The nonintrusive approach computes the expansioncoefficients by directly projecting the quantity of interest
(e.g., the model outputs) onto the basis functionsΨi. One advantage of this method is that the deterministic solver can
be reused and treated as a black box. The deterministic problem then needs to be solved many times, but typically at
carefully chosen parameter and design values. The nonintrusive approach also offers flexibility in choosing arbitrary
functionals of the state trajectory as observables; these functionals may depend smoothly onΞ even when the state
itself has a less regular dependence. Here, we will employ a nonintrusive approach.

Applying orthogonality, the PC coefficients are simply

Gc,i =
EΞ [Gc(Θ(Ξ),d(Ξ))Ψi(Ξ)]

EΞ [Ψ2
i
(Ξ)]

=

∫

F Gc(θ(ξ),d(ξ))Ψi(ξ)fΞ(ξ) dξ
∫

F
Ψ2

i
(ξ)fΞ(ξ) dξ

, (14)

whereGc,i is the coefficient ofΨi for thecth component of the model outputs. Analytical expressions are available
for the denominatorsEΞ

[

Ψ2
i
(Ξ)

]

, but the numerators must be evaluated numerically. When theevaluations of the
integrand (and hence the forward model) are expensive andns is large, an efficient method for numerical integration
in high dimensions is essential.

To evaluate the numerators in (14), we employ Smolyak sparsequadrature based on one-dimensional Clenshaw-
Curtis quadrature rules [63]. Care must be taken to avoid significant aliasing errors when using sparse quadrature to
construct polynomial approximations, however. Indeed, itis advantageous to recast the approximation as a Smolyak
sum of constituent full-tensor polynomial approximations, each associated with a tensor-product quadrature rule that
is appropriate to its polynomials [54, 64]. This type of approximation may be constructedadaptively, thus taking
advantage of weak coupling and anisotropy in the dependenceof G onΘ andd. More details can be found in [54].

At this point, we may substitute the polynomial approximation ofG into the likelihood functionfY|Θ,d, which in
turn enters the expected information gain estimator (3). This enables fast evaluation of the expected information gain.
The computation of appropriate gradient information is discussed next.

4. INFINITESIMAL PERTURBATION ANALYSIS

This section applies the method of infinitesimal perturbation analysis (IPA) [65–67] to construct an unbiased esti-
mator ĝ of the gradient of the expected information gain, for use in RM. The same procedure yields the gradient
∇ĥN,M (·, wt

s) of a finite-sample Monte Carlo approximation of the expectedinformation gain, for use in SAA. The
central idea of IPA is that under certain conditions, an unbiased estimator of the gradient of a function can be obtained
by simply taking the gradient of an unbiased estimator of thefunction. We apply this idea in the context of optimal
Bayesian experimental design.

The first requirement of IPA is the availability of an unbiased estimator of the function. Unfortunately, as described
in Section 2.1,̂UN,M in (3) is a biased estimator ofU for finite M [6]. To circumvent this technicality, let us optimize
the following objective function instead ofU :

ŪM (d) ≡ EΘs,Ys|d

[

ÛN,M (d,Θs,Ys)
]

=

∫

Ys

∫

Hs

ÛN,M(d, θs,ys)fΘs,Ys|d(θs,ys|d) dθs dys

=

∫

Ys

∫

Hs

ÛN,M(d, θs,ys)

(N,M)
∏

(i,j)=(1,1)

fY|Θ,d(y(i)|θ(i),d)fΘ(θ(i))fΘ(θ̃
(i,j)

) dθs dys, (15)

whereHs × Ys is the support of the joint densityfΘs,Ys|d(θs,ys|d). Our original estimator̂UN,M is now unbiased
for the new objectivēUM by construction! The tradeoff, of course, is that the function being optimized is no longer
the trueU . But it is consistent in that̄UM (d) → U(d) asM → ∞, for anyN > 0. (To illustrate this convergence,
realizations ofÛN,M , i.e., Monte Carlo approximations of̄UM , are plotted in Fig. 2 for varyingM .)

The second requirement of IPA comprises conditions allowing an unbiased gradient estimator to be constructed
by taking the gradient of the unbiased function estimator. Standard conditions (see, for example, [67]) require that the

Volume 4, Number 6, 2014



488 Huan & Marzouk

random quantity (e.g.,̂UN,M ) be almost surely continuous and differentiable. Here, becauseÛN,M is parametrized
by continuous random variables that have densities with respect to Lebesgue measure, we can take a perspective that
relies on Leibniz’s rule with the following conditions:

1. ÛN,M and∇d

(

ÛN,M

)

are continuous over the product space of design variables and random variables,D ×
Hs × Ys;

2. the density of the “noise” random variable is independentof d.

The first condition supports the interchange of differentiation and integration according to Leibniz’s rule. This
condition might be difficult to verify in arbitrary cases, but the use of finite-order polynomial forward models and
continuous distributions for the prior and observational noise ensures that we meet the requirement.

The second condition is needed to preserve the form of the expectation. If it is violated, differentiation with
respect tod must be performed on thefΘs,Ys|d(θs,ys|d) term as well via the product rule, in which case the

additional term
∫

Ys

∫

Hs
ÛN,M (d, θs,ys)∇

[

fΘs,Ys|d(θs,ys|d)
]

dθs dys would no longer be an expectation with
respect to the original density. The likelihood-ratio method may be used to restore the expectation [67, 68], but it is
not pursued here. Instead, it is simpler to transform the noise to a design-independent random variable as described in
Section 2.2.2.

In the context of optimal Bayesian experimental design, theoutcome of the experimentY is a stochastic quantity
that depends on the designd. From the stochastic optimization perspective,Y is thus a noise variable. To demon-
strate the transformation to design-independent noise, weassume a likelihood where the data result from an additive
Gaussian perturbation to the forward model:

Y = G(Θ,d) + E

= G(Θ,d) + C(Θ,d)Z. (16)

HereC is a diagonal matrix with nonzero entries reflecting the dependence of the noise standard deviation on other
quantities, andZ is a vector of i.i.d. standard normal random variables. For example, “10% Gaussian noise on the
cth component” would translate toCc,i = δci0.1|Gc(Θ,d)|, whereδci is the Kronecker delta function. For other
forms of the likelihood, the right-hand side of (16) is simply replaced by a generic function ofΘ, d, and some
random variableZ. Here, however, we will focus on the additive Gaussian form in order to derive illustrative expres-
sions.

By extracting a design independent random variableZ from the noise termE ≡ C(Θ,d)Z, we will satisfy the
second condition above. The design-dependence ofY is incorporated intôUN,M by substituting (16) into (3):

ÛN,M(d, θs, zs) =
1

N

N
∑

i=1

{

ln
[

fY|Θ,d

(

G(θ(i),d) + C(θ(i),d)z(i)
∣

∣

∣
θ

(i),d
)]

− ln

[

1

M

M
∑

j=1

fY|Θ,d

(

G(θ(i),d) + C(θ(i),d)z(i)
∣

∣

∣
θ

(i,j),d
)

]}

, (17)

wherezs =
{

z(i)
}

. The new noise variables are now independent ofd. The samples ofy(i) drawn from the likelihood
are instead realized by drawingz(i) from N(0, I), then multiplying these samples byC and adding them to the model
output.

With all conditions for IPA satisfied, an unbiased estimatorof the gradient ofŪM , corresponding tôg in (6), is
simply∇dÛN,M(d, θs, zs) since
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EΘs,Zs

[

∇dÛN,M(d,Θs,Zs)
]

=

∫

Zs

∫

Θs

∇dÛN,M(d, θs, zs)fΘs,Zs
(θs, zs) dθs dzs

= ∇d

∫

Zs

∫

Θs

ÛN,M(d, θs, zs)fΘs,Zs
(θs, zs) dθs dzs

= ∇dEΘs,Zs

[

ÛN,M(d,Θs,Zs)
]

= ∇dŪM (d), (18)

whereZs is the support offZs
(zs). This gradient estimator is therefore suitable for use in RM.

The gradient of the finite-sample Monte Carlo approximationof U(d), i.e.,∇ĥN,M (·, wt
s) used in SAA, takes

exactly the same form. The only difference between the two isthat ĝ lets Θs andZs be random at every iteration
of the optimization process. When used as∇ĥN,M (·, wt

s), Θs andZs are frozen at some realization throughout the
optimization process. In either case, these gradient expressions contain derivatives of the likelihood function and
thus derivatives∇dG(θ,d). WhenG is replaced with a polynomial expansion, these derivativescan be computed
inexpensively. Detailed derivations of the gradient estimator using orthogonal polynomial expansions can be found in
the Appendix.

5. SOURCE INVERSION PROBLEM

5.1 Governing Equations

We demonstrate the optimal Bayesian experimental design formulation and our stochastic optimization tools on a two-
dimensional contaminant identification problem. The goal is to place a single sensor that yields maximum information
about the location of the contaminant source. Contaminant transport is governed by a scalar diffusion equation on a
square domain:

∂w

∂t
= ∇2w + S (xsrc,x, t) , x ∈ X = [0, 1]

2
, (19)

wherew(x, t;xsrc) is the space-time concentration field parametrized by the coordinate of the source centerxsrc. We
impose homogeneous Neumann boundary conditions

∇w · n = 0 on∂X , (20)

along with a zero initial condition

w(x, 0;xsrc) = 0. (21)

The source function has a Gaussian spatial profile

S (xsrc,x, t) =







s

2πh2
exp

(

−‖xsrc − x‖2

2h2

)

, 0 ≤ t < τ

0, t ≥ τ
(22)

wheres, h, andτ areknown(prescribed) source intensity, width, and shutoff time parameters, respectively, andxsrc ≡
(Θx, Θy) is the unknown source location that we would ultimately liketo infer. The design variable is the location of
a single sensor,xsensor ≡ (dx, dy), and the measurement data{Yi}5

i=1 comprise five noisy point observations ofw at
the sensor location and at five equally spaced sample times. For this study, we chooses = 2.0, h = 0.05, τ = 0.3; a
uniform priorΘx, Θy ∼ U (0, 1); and an additive error modelYi = w (xsensor, ti, ;xsrc) + Ei, i = 1 . . . 5, such that
theEi are zero-mean Gaussian random variables, mutually independent givenxsensor andxsrc, each with standard
deviationσi = 0.1+0.1 |w (xsensor, ti;xsrc)|. In other words, the error associated with the data has a “floor” value of
0.1 plus an additional contribution that is 10% of the signal. The sensor may be placed anywhere in the square domain,
such that the design space is(dx, dy) ∈ [0, 1]2. Figure 1 shows an example concentration profile and measurements.
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FIG. 1: Example forward model solution and realizations from the likelihood. In particular, the solid line represents
the time-dependent contaminant concentrationw(x, t;xsrc) at x = xsensor = (0.0, 0.0), given a source centered at
xsrc = (0.1, 0.1), source strengths = 2.0, width h = 0.05, and shutoff timeτ = 0.3. Parameters are defined in the
diffusion equation (19). The five crosses represent noisy measurements at five designated measurement times.

Evaluating the forward model thus requires solving the partial differential equation (19) at fixed realizations of
θ = xsrc and extracting the solution field at the design locationd = xsensor. We discretize (19) using second-order
centered differences on a 25× 25 spatial grid and a fourth-order backward differentiation formula for time integration.
As described in Section 3, we replace the full forward model with a polynomial chaos surrogate, for computational
efficiency. To this end, we construct a Legendre polynomial approximation of the forward model output over the
four-dimensional joint parameter and design space, using atotal-order polynomial truncation of degree12 and106

forward model evaluations. This high polynomial degree andrather large number of forward model evaluations were
deliberately selected in order to render truncation and aliasing error insignificant in our study. Optimal experimental
design results of similar quality may be obtained for this problem with surrogates of lower order and with far fewer
quadrature points (e.g., degree 4 with104 forward model evaluations) but for brevity they are not included here. The
relativeL2 errors of the current surrogate range from6 × 10−3 to 10−6.

The optimal Bayesian experimental design formulation now seeks the sensor locationx∗
sensor such that when the

experiment is performed,on average—i.e., averaged over all possible source locations according to the prior, and
over all possible resulting concentration measurements according to the likelihood—the five concentration readings
{Yi}5

i=1 yield the greatest information gain from prior to posterior.

5.2 Results

5.2.1 Objective Function

Before we present the results of numerical optimization, wefirst explore the properties of the expected information
gain objective. Numerical realizations of̂UN,M for N = 1001 andM = 2, 11, 101, and 1001 are shown in Fig. 2.
These plots can be interpreted as 1-sample Monte Carlo approximations ofŪM = E[ÛN,M ], or equivalently, asl-
sample Monte Carlo approximations ofŪM = E[Û(N/l),M ]. As N grows,ÛN,M becomes a better approximation

to ŪM and asM grows,ŪM becomes a better approximation toU . The figures show that values of̂UN,M increase
whenM increases (for fixedN ), suggesting a negative bias at finiteM . At the same time, the objective becomes less
flat in d; sinceU is certainly closer to theM = 1001 surface than theM = 2 surface, these results suggest thatU
is not particularly flat ind. This feature of the current design problem is encouraging,since stochastic optimization
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0

0.5

1

0

0.5

1
0.5

1

1.5

2

 

xy
 

E
xp

ec
te

d 
U

til
ity

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(d) N = 1001, M = 1001

FIG. 2: Surface plots of independentÛN,M realizations, evaluated over the entire design space[0, 1]2 3 d = (x, y).
Note that the vertical axis ranges and color scales vary among the subfigures.

problems with higher curvature can be more easily solved; inthe context of SA, for example, they effectively have a
higher signal-to-noise ratio.

The expected information gain objective inherits symmetries from the square, as expected from the physical nature
of the problem. The plots also suggest a smooth albeit nonconvex underlying objectiveU , with inflection points
lying on an interior circle and four local maxima symmetrically located at the corners of the design space. The
best placement for a single sensor is therefore at the corners of the design space, while the worst placement is at
the center. The reason for this perhaps counterintuitive result is that the diffusion process is isotropic: a series of
concentration measurements can only determine the distance of the source from the sensor, not its orientation. The
posterior distribution thus resembles an annulus of constant radius surrounding the sensor. A sensor placement that
minimizes the area of these annuli, averaged over all possible source locations according to the prior, tends to be
optimal. In this problem, because of the domain geometry andthe magnitude of the observational noise, these optimal
locations happen to be the furthest points from the domain center, i.e., the corners.

Figure 3 shows posterior probability densities for the source location, under different sensor placements, given
data generated from a “true” source centered atxsrc = (0.09, 0.22). The posterior densities are evaluated using the
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FIG. 3: Contours of posterior probability density for the source location, given different sensor placements. The true
source location, marked with a blue circle, isxsrc = (0.09, 0.22).
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polynomial chaos surrogate, while the data are generated bydirectly solving the diffusion equation on a denser (101×
101) spatial grid than before and then adding the Gaussian noise described in Section 5.1. Note that the posteriors are
extremely non-Gaussian. Moreover, they generally includethe true source location, but do not center on it. Reasons for
not expecting the posterior mode to match the true source location are twofold: first, we have only five measurements,
each perturbed with a relatively significant random noise; second, there is model error, due to mismatch between the
polynomial chaos approximation constructed from the coarser spatial discretization of the PDE and the more finely
discretized PDE model used to simulate the data.7,8 For this source configuration, it appears that a sensor placed at any
of the corners yields a “tighter” posterior than a sensor placed at the center. But we must keep in mind that this result is
not guaranteed forall source locations and data realizations; it depends on wherethe source actually is. [Imagine, for
example, if the source happened to be very close to the centerof the domain; then the sensor at (0.5, 0.5) would yield
the tightest posterior.] What the optimal experimental design method yields is the optimal sensor placementaveraged
over the prior distribution of the source location and the predictive distribution of the data.

5.2.2 Stochastic Optimization Results

We now analyze the optimization results, first assessing thebehavior of the two stochastic optimization methods
individually, and then comparing their performance.

Recall that the RM algorithm is essentially a steepest-ascent method (since we are maximizing the objective)
with a stochastic gradient estimate. Figures 4–6 each show four sample RM optimization paths overlaid on theÛN,M

surfaces from Fig. 2. The optimization does not always proceed in an ascent direction, due to the noise in the gradient
estimate, but even a noisy gradient can be useful in eventually guiding the algorithm to regions of high objective
value. Naturally, fewer iterations are needed and good designs are more likely to be found when the variance of the
gradient estimator is reduced by increasingN andM . Note that one must be cautious not to over-generalize from
these figures, since the paths shown in each plot are not necessarily representative. Instead, their purpose is to provide
intuition about the optimization mechanics. Data derived from many runs are more appropriate performance metrics,
and will be used later in this section.

For SAA-BFGS, each choice of the sample setwt
x yields a different deterministic objective; example realizations

of this objective surface are shown in Figs. 7–9. For each realization, a local maximum is found efficiently by the BFGS
algorithm, requiring only a few (usually less than 10) iterations. For each set of results corresponding to a particular
N (i.e., each of Figs. 7–9), the random numbers used for smaller values ofM are proper subsets of those used for
largerM . We thus expect some similarity and a sense of convergence among the subplots in each figure. Note also
that whenN is low, realizations of the objective can be extremely different from Fig. 2 (for example, the plots in Fig. 7
have local maxima near the center of the domain), although improvement is observed asN is increased. In general,
each deterministic problem in SAA can have very different features than the underlying objective function. None of
the realizations encountered here has maxima at the corners, or is even symmetric. Nonetheless, when sampling over
many SAA subproblems, even a lowN can provide reasonably good results. This will be shown in Tables 1 and 2,
and discussed in detail below.

To compare the performance of RM and SAA-BFGS, 1000 independent runs are conducted for each algorithm,
over a matrix ofN andM values. The starting locations of these runs are sampled from a uniform distribution over
the design space. We make reasonable choices for the numerical parameters in each algorithm (e.g., gain schedule
scaling, termination criteria) leading to similar run times. Histograms of the final design parameters (sensor positions)
resulting from each set of 1000 optimization runs are shown in Table 1. The top figures in each major row represent
RM results, while the bottom figures in each major row correspond to SAA-BFGS results. Columns correspond to
different values ofM . It is immediately apparent that more designs cluster at thecorners of the domain asN andM
are increased. For the case with the largest number of samples (N = 101 andM = 1001), each corner has around

7Indeed, there are two levels of model error: (1) between the PC expansion and the PDE model used to construct the PC expansion,
which has a∆x = ∆y = 1/24 spatial discretization; (2) between this PDE model and the more finely discretized (∆x = ∆y =
1/100) PDE model used to simulate the noisy data.
8Model error is an extremely important aspect of uncertaintyquantification [13], but its treatment is beyond the scope ofthis study.
Understanding the impact of model error on optimal experimental design is an important direction for future work.
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FIG. 4: Sample paths of the RM algorithm withN = 1, overlaid onÛN,M surfaces from Fig. 2 with the corresponding
M values. The large� is the starting position and the large× is the final position.

250 designs, suggesting that higher sample sizes cannot further improve the optimization results. An “overlap” in
quality across the differentN cases is also observed: for example, results of theN = 101, M = 2 case are worse
than those of theN = 11, M = 1001 case. A balance is thus needed in choosing samples sizesN andM , and it is
not ideal to heavily favor sampling either the inner or outerMonte Carlo loop inÛN,M . Overall, comparing the RM
and SAA-BFGS plots at intermediate values ofM andN , we see that RM has a slight advantage over SAA-BFGS by
placing more designs at the corners.

The distribution of final designs alone does not reflect the robustness of the optimization results. For example, ifU
is very flat near the optimum, then suboptimal designs need not be very close to the true optimum in the design space
to be considered good designs in practice. To evaluate robustness, a “high-quality” objective estimatêU1001,1001 is
computed for each of the 1000 final designs considered above.The resulting histograms are shown in Table 2, where
again the top subrows are for RM and the bottom subrows are forSAA-BFGS, with the results covering a full range of
N andM values. In keeping with our previous observations, performance is improved asN andM are increased—in
that the mean (over the optimization runs) expected information gain increases, while the variance in the expected
information gain decreases. Note, however, that even if all1000 optimization runs produced identical final designs,
this variance will not reach zero, as there exists a “floor” corresponding to the variance of the estimatorÛ1001,1001.
This minimum variance can be observed in the histograms of the RM results withN = 101 andM = 101 or 1001.
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FIG. 5: Sample paths of the RM algorithm withN = 11, overlaid onÛN,M surfaces from Fig. 2 with the correspond-
ing M values. The large� is the starting position and the large× is the final position.

One interesting feature of the histograms in Table 2 is theirbimodality. The higher mode reflects designs near
the four corners, while the lower mode encompasses all othersuboptimal designs. AsN or M increase, we observe
a transfer of probability mass from the lower mode to the upper mode. However, the sample sizes are not large
enough for the lower mode to completely disappear for most cases; it is only absent in the two RM cases with the
largest sample sizes. Overall, the histograms are similar in shape for both algorithms, but RM appears to produce less
variability in the expected information gain, particularly at highN values.

Table 3 shows histograms of optimality gap estimates from the 1000 SAA-BFGS runs. Since we are dealing with
amaximizationproblem (for the expected information gain), the estimatorfrom Section 2.2.2 is reversed in sign, such
that the upper bound is now̄hN and the lower bound iŝhN ′(x̂t

s, w
t
s′). The lower bound must be evaluated with the

same inner-loop Monte Carlo sample sizeM used in the optimization run in order to represent an identically biased
underlying objective; hence, the lower bound values willnot be the same as the “high-quality” objective estimates
Û1001,1001 discussed above. From the table, we observe that asN increases, values of the optimality gap estimate
decrease. This is a result of the lower bound rising withN (since the optimization is better able to find designs in
regions of largēUM , e.g., corners of the domains in Table 1), and the upper boundsimultaneously falling (since its
positive bias monotonically decreases withN [39]). Consequently, both bounds become tighter and the gapestimates
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FIG. 6: Sample paths of the RM algorithm withN = 101, overlaid onÛN,M surfaces from Fig. 2 with the corre-
spondingM values. The large� is the starting position and the large× is the final position.

tend toward zero. AsM increases, the variance of the gap estimates increases. Since the upper bound (h̄N ) is fixed
for a given set of SAA runs, the spread is only affected by the variability of the lower bound. Indeed, from Figure 2,
it is apparent that the objective becomes less flat asM increases, with the highest gradients (considering the good
design regions only) occurring at the corners. This translates to a higher sensitivity, as a small “imperfection” in the
design would lead to larger changes in objective estimate; one then would expect the variation ofĥN ′(x̂t

s, w
t
s′) to

become higher as well, leading to greater variance in the gapestimates. Finally, asM increases, the histogram values
tend to increase, but they increase more slowly for larger values ofN . Some intuition for this result may be obtained
by considering therelative rates of change of the upper and lower bounds with respect toM , given different values
of N . Again referring to Fig. 2, the objective values generally increase withM , indicating an increase of the lower
bound. This increase should be more pronounced for largerN , since the optimization converges to designs closer to
the corners, where, as mentioned earlier, the objective haslarger gradient. The upper bound increases withM as well,
as indicated by the contour levels in Figs. 7–9. But this rateof increase is observed to be slowest at the highestN (i.e.,
in Fig. 9). Combining these two effects, it is reasonable that asN increases, the gap estimate will increase withM at
a slower rate.
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FIG. 7: Realizations of the objective function surface using SAA, and corresponding steps of BFGS, withN = 1.
The large� is the starting position and the large× is the final position.

Can the optimality gap be used to choose values ofM andN? For a fixedM , we certainly have convergence as
N increases, and the gap estimate can be a good indicator of solution quality. However, because different values ofM
correspond to different objective surfaces (due to the biasof ÛN,M ), the optimality gap is unsuitable for comparisons
across different values ofM ; indeed, in our example, even though solution quality is improved withM , the gap
estimates appear looser and noisier.

Another performance metric we extract from the stochastic optimization runs is the number of iterations required
to reach a solution; histograms of iteration number for RM and SAA, for the same matrix ofM andN values, are
shown in Table 4. At low sample sizes, many of the SAA-BFGS runs take only a few iterations, while almost all of
the RM runs terminate at the maximum allowable number of iterations (50 in this case). This difference again reflects
the efficiency of BFGS for deterministic optimization problems. AsN andM are increased, the histograms show a
“transfer of mass” from higher iteration numbers to lower iteration numbers, coinciding somewhat with the bimodal
behavior described previously. The reduction in iterationnumber with increased sample size implies that ann−fold
increase in sample size leads to an increase in computational time that is oftenmuch lessthan a factor ofn. Accounting
for this sublinear relationship when allocating computational resources, especially if samples can be drawn in parallel,
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FIG. 8: Realizations of the objective function surface using SAA, and corresponding steps of BFGS, withN = 11.
The large� is the starting position and the large× is the final position.

can lead to substantial savings. Although SAA-BFGS generally requires fewer iterations, each iteration takes longer
than a step of RM. RM thus offers a higher “resolution” in run times, potentially giving more freedom to the user in
stopping the algorithm. RM thus becomes more attractive as the evaluation of the objective function becomes more
expensive.

As a single integrated measure of the quality of the stochastic optimization solutions, we evaluate the following
mean-square error (MSE):

MSE =
1

T

T
∑

t=1

(

Û1001,1001(d
t, θt

s′ , zt
s′) − U ref

)2

, (23)

wheredt, t = 1 . . . T , are the final designs from a given optimization algorithm, andU ref is the true optimal value of
the expected information gain. Since the true optimum is unavailable in this study,U ref is taken to be the maximum
value of the objective over all runs. Recall that the MSE combines the effects of bias and variance; here it reflects
the variance in objective values plus the difference (squared) between the mean objective value and the true optimum,

International Journal for Uncertainty Quantification



Gradient-Based Stochastic Optimization Methods in Bayesian Experimental Design 499

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3

0.35

0.4

0.45

(a) N = 101, M = 2

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

(b) N = 101, M = 11

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

(c) N = 101, M = 101

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(d) N = 101, M = 1001

FIG. 9: Realizations of the objective function surface using SAA, and corresponding steps of BFGS, withN = 101.
The large� is the starting position and the large× is the final position.

calculated viaT = 1000 replicated optimization runs. Figure 10 relates solution quality to computational effort by
plotting the MSE against average computational time (per run). Each symbol represents a particular value ofN (×,
©, and� representN = 1, 11, and 101, respectively), while the four differentM values are reflected through
the average run times. These plots confirm the behavior we have previously encountered. Solution quality generally
improves (lower MSE) with increasing sample sizes, although a balanced allocation of samples must be chosen. For
instance, a largeN with smallM can yield inferior solutions to a smallerN with largerM ; while, for any givenN ,
continued increases inM beyond some threshold yield minimal improvements in MSE. The best sample allocation is
described by the minimum of all the curves. We highlight these “optimal fronts” in light red for RM and in light blue
for SAA-BFGS. Monte Carlo error in the “high-quality” estimator Û1001,1001 may also be reflected in the nonzero
MSE asymptote for the high-N RM cases.

According to Fig. 10, RM outperforms SAA-BFGS by consistently achieving smaller MSE for a given computa-
tional effort. One should be cautious, however, in generalizing from these numerical experiments. The advantage of
RM is relatively small, and other factors such as code optimization, choices of algorithm parameters, and of course
the experimental design problem itself can affect or even reverse this advantage.
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TABLE 1: Histograms of final search positions resulting from 1000 independent runs of RM (top subrows) and SAA
(bottom subrows) over a matrix ofN andM sample sizes. For each histogram, the bottom-right and bottom-left axes
represent the sensor coordinatesx andy, respectively, while the vertical axis represents frequency
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6. CONCLUSIONS

This paper has explored the stochastic optimization problem arising from a general nonlinear formulation of optimal
Bayesian experimental design. In particular, we employed an objective that reflects theexpected information gainin
model parameters due to an experiment, and formulated two gradient-based approaches to stochastic optimization
in this context: Robbins-Monro (RM) stochastic approximation, and sample average approximation (SAA) coupled
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TABLE 2: High-quality expected information gain estimates at the final sensor positions resulting from 1000 inde-
pendent runs of RM (top subrows, blue) and SAA-BFGS (bottom subrows, red). For each histogram, the horizontal
axis represents values ofÛM=1001,N=1001 and the vertical axis represents frequency
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with BFGS. Both of these algorithms require gradient information derived from Monte Carlo approximations of the
objective: an unbiased gradient estimator in the former case, and gradients of a finite-sample Monte Carlo estimate
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TABLE 3: Histograms of optimality gap estimates for SAA-BFGS, over amatrix of samples sizesM andN . For
each histogram, the horizontal axis represents value of thegap estimate and the vertical axis represents frequency
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in the latter case. Methods for extracting this gradient information must contend with an estimator of expected infor-
mation gain that is not a simple Monte Carlo sum, but rather contains nested Monte Carlo estimates. It is therefore
expensive to evaluate, and biased for finite inner-loop sample sizes. To circumvent these challenges, we approximate
the forward model embedded in the likelihood function with apolynomial chaos expansion, and maximize the ex-
pected information gain computed via this approximation instead. Gradient information is readily extracted from the
polynomial chaos expansion, with the help of a simple perturbation analysis.

We analyze the performance of the two stochastic optimization approaches using the problem of sensor placement
for source inversion, cast as optimal experimental design over acontinuousdesign space. Numerical experiments,
performed over a matrix of inner- and outer-loop sample sizes, examine the impact of bias and variance in the objective
function and gradient estimates on the efficiency of the optimization algorithms and on the quality of the resulting
solutions. These experiments suggest (unsurprisingly) that solution quality improves as sample sizes increase, but
also that optimization runs may converge in fewer iterations for larger sample sizes. Also, abalancedallocation of
computational resources between the inner and outer Monte Carlo sums is important for computational efficiency.
Arbitrarily increasing the inner-loop sample size, for instance, yields little improvement in solution quality when the
outer-loop samples are too few. Our results also suggest that RM has a consistent performance advantage over SAA-
BFGS, but this conclusion is necessarily problem-dependent. Instead of declaring one algorithm to be superior, our
broader goal is to illustrate the differences between the two algorithms and provide some selection guidelines based
on their properties.

The SAA approach may provide more flexibility than SA, as it can be combined with any deterministic opti-
mization algorithm, whereas the SA approach essentially specifies the form of each optimization iteration. SAA’s
flexibility allows one to take advantage of problem structure: if realizations of the objective surface are known to be
“well-behaved” and smooth, gradient-based algorithms such as BFGS can exploit this regularity, as in the present
source inversion example. On the other hand, if the objective is not smooth, or if gradients are not available, some
gradient-free deterministic algorithm may be more appropriate. Estimates of optimality gap, obtained from replicate
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TABLE 4: Number of iterations in each independent run of RM (top subrows, blue) and SAA-BFGS (bottom
subrows, red), over a matrix of sample sizesM andN . For each histogram, the horizontal axis represents iteration
number and the vertical axis represents frequency
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SAA solutions, can be used to adaptively adjust the outer-loop Monte Carlo sample size, but are unsuitable for as-
sessing the inner-loop sample size because of bias effects.Future work could employ the common random number
stream approach in [40] to obtain a lower-variance estimateof optimality gap (along with a confidence interval), or
the jackknife technique proposed in [69] for bias reduction.
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(c) RM and SAA-BFGS “optimal fronts”

FIG. 10: Mean square error, defined in (23), versus average run time for each optimization algorithm and various
choices of inner-loop and outer-loop sample sizes. The highlighted curves are “optimal fronts” for RM (light red) and
SAA-BFGS (light blue).

The RM algorithm and other stochastic approximation methods must use a stochastic gradient estimator. This
can lead to poor performance if only high-variance gradientestimates are available. In the current context, increas-
ing the outer-loop sample size reduces variance and the RM algorithm performed relatively well. Note that the fre-
quent (yet cheaper) steps of RM effectively provide a finer resolution in run time than SAA, giving the user more
freedom to terminate the algorithm without losing much progress between the termination time and the previous
optimization iteration. Therefore, RM may become more attractive as objective evaluations become more expen-
sive.9

The present approach used aglobal polynomial chaos surrogate, constructed over the product of the parameter
spaceH and the design spaceD. In model-based methods fordeterministicderivative-free optimization, one might
prefer to construct local surrogates valid over increasingly smaller intervals ofD, particularly as one approaches the

9Even if a polynomial chaos expansion is used as a surrogate for the forward model, its evaluation can become expensive if the
stochastic dimension and polynomial order are high, thoughit remains much cheaper than the original model.
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optimum. Pursuing similar ideas in the stochastic context could possibly offer additional accuracy, but sampling errors
in the stochastic optimization solution will always limit potential gains.

Finally, as we pointed out in Section 2.1, this paper has focused on batch or open-loop experimental design, where
the parameters for all experiments are chosen before data are actually collected. An important target for future work is
rigorous sequential or closed-loop design, where the data from one set of experiments are used to guide the choice of
the next set. Here we expect stochastic optimization algorithms, for expected information gain and other objectives,
to continue playing a crucial role.
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APPENDIX: ANALYTICAL DERIVATION OF THE UNBIASED GRADIENT ESTIMATOR

In this section, we derive the analytical form of the unbiased gradient estimator∇ÛN,M (d, θs, zs),10 following the
method presented in Section 4.

10Recall that this estimator is unbiased with respect to the gradient ofŪM .
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The estimator̂UN,M (d, θs, zs) is defined in (17). Its gradient in component form is

∇ÛN,M(d, θs, zs) =
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wherend is the dimension of the design parametersd andda denotes theath component ofd. Theath component of
the gradient is then
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Partial derivatives of the likelihood function with respect to d are required above. We assume that each component of
C(θ(i),d) is of the formαc + βc|Gc(θ

(i),d)|, c = 1 . . . ny, whereny is the dimension of the data vectorY, and
αc,βc are constants. Also, let the random vectorsz(i) be mutually independent and composed of i.i.d. components,
such that the data are conditionally independent givenθ andd. The derivative of the likelihood function then becomes
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Introducing a standard normal density for eachz
(i)
c , the likelihood associated with a single component of the data

vector is
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and its derivatives are
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In cases where conditioning onθ(i,j) is replaced by conditioning onθ(i) [i.e., for the first summation term in Eq. (25)],
the expressions simplify to
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We now require the derivative of each model outputGc with respect tod. In most cases, this quantity will not
be available analytically. One could use an adjoint method to evaluate the derivatives, or instead employ a finite
difference approximation, but embedding these approachesin a Monte Carlo sum may be prohibitive, particularly if
each forward model evaluation is computationally expensive. The polynomial chaos surrogate introduced in Section 3
addresses this problem by replacing the forward model with polynomial expansions for eitherGc

Gc(θ
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Heregb are the expansion coefficients andJ is an admissible multi-index set indicating which polynomial terms
are in the expansion. For instance, ifnθ is the dimension ofθ andnd is the dimension ofd, such thatnθ + nd is
the dimension ofξ, thenJ := {b ∈ N

nθ+nd

0 : |b|1 ≤ p} is a total-order expansion of degreep. This expansion
converges in theL2 sense asp → ∞.

Consider the latter (ln-Gc) case; here, the derivative of the polynomial chaos expansion is
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In the former (Gc without the logarithm) case, we obtain the same expression except without theexp [·] term.
To complete the derivation, we assume that each component ofthe input parametersΘ and design variablesd is

represented by an affine transformation of corresponding basis random variableΞ:

Θl = γl + δlΞl, (34)

dl′−nθ
= γl′ + δl′Ξl′ , (35)

whereγ(·) andδ(·) 6= 0 are constants, andl = 1, . . . , nθ and l′ = nθ + 1, . . . , nθ + nd. This is a reasonable
assumption sinceΞ can be typically chosen such that their distributions are ofthe same family as the prior onθ (or
the uniform “prior” ond); this choice avoids any need for approximate representations of the prior. The derivative of
Ψb(ξ(θ(i),d)) from Eq. (33) is thus
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and the derivative of the univariate basis functionψ with respect toda is
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where the second equality is a result of using Eq. (35). The derivative of the polynomial basis function with re-
spect to its argument is available analytically for many standard orthogonal polynomials, and may be evaluated using
recurrence relationships [70]. For example, in the case of Legendre polynomials, the usual derivative recurrence rela-
tionship is ∂

∂ξ
ψn(ξ) = [−bξψn(ξ) + bψn−1(ξ)] /(1 − ξ2), wheren is the polynomial degree. However, division by

(1−ξ2) presents numerical difficulties when evaluated onξ that fall on or near the boundaries of the domain. Instead,
a more robust alternative that requires both previous polynomial function and derivative evaluations can be obtained
by directly differentiating the three-term recurrence relationship for the polynomial, and is preferable in practice:

∂
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n
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n
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This concludes the derivation of the analytical gradient estimator∇ÛN,M(d, θs, zs).
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