Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i9.30
pages 769-786

DENOISING OF MULTICHANNEL IMAGES WITH NONLINEAR TRANSFORMATION OF REFERENCE IMAGE

S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

ABSTRAKT

It has been demonstrated recently that efficiency of filtering a noisy component image of a multichannel image can be sufficiently improved under condition that the multichannel image has almost noise-free component image(s) that possess high correlated with the noisy component image used as reference. High correlation and practical absence of the noise are only pre-requisites for efficient filtering of the noisy image using reference. Other criteria of similarity than cross-correlation factor are important. In this paper we show how it is possible to make the reference image very "close" to the noisy one by exploiting nonlinear transformation. Moreover, it is demonstrated that the proposed approach can be useful for denoising images corrupted by signal-dependent noise which is often the case for multichannel remote sensing data.


Articles with similar content:

DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
PRE-REQUISITES FOR SMART LOSSY COMPRESSION OF NOISY REMOTE SENSING IMAGES
Telecommunications and Radio Engineering, Vol.77, 2018, issue 3
Benoit Vozel, V. V. Lukin, S. K. Abramov, A. Zemliachenko, Karen O. Egiazarian, M. Alhihi
DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES
Telecommunications and Radio Engineering, Vol.76, 2017, issue 19
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
Removal of Mixed Poisson and Impulse Noise in 1-D Signals by Non-Adaptive and Adaptive Nonlinear Filters
Telecommunications and Radio Engineering, Vol.67, 2008, issue 14
A. N. Besedin, S. K. Abramov, S. Peltonen, P. Ye. Yeltsov
BLIND FEATURE SELECTION AND EXTRACTION IN A 3D IMAGE CUBE
Journal of Flow Visualization and Image Processing, Vol.19, 2012, issue 2
Muhammad Ahmad , Ihsan Ul Haq, Syungyoung Lee, Qaisar Mushtaq