Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i18.20
pages 1637-1649


Q. Wang
School of Computer Science, Northeast Electric Power University, 169 Changchun Road, Jilin, Jilin, China
L. Zhang
School of Computer Science, Northeast Electric Power University, 169 Changchun Road, Jilin, Jilin, China
B. Li
School of Computer Science, Northeast Electric Power University, 169 Changchun Road, Jilin, Jilin, China
Yi. Zhu
Engineering Technology Centor, CRRC Changchun Railway Vehicles Company Limited 2001 Changke Road, Changchun, Jilin, China


In the MIMO-OFDM relay system, most semi-blind receivers based on tensor model adopt alternating least squares algorithm (ALS), which has high computational complexity. For this reason, a closed-form semi-blind receiver algorithm based on asymmetric nested PARAFAC decomposition (ANPD) is proposed for MIMO-OFDM relay system. This algorithm uses triple Khatri-Rao (KR) product to perform space-time-frequency (STF) coding on the symbol matrix, which formed a fifth-order tensor at the destination node that satisfies the proposed ANPD. Then based on this decomposition, Khatri-Rao factorization (KRF) is used to derive the semi-blind receiver for joint channel and symbol estimation. To verify the feasibility of the proposed receiver, the complexity cost and uniqueness issues of the receiver are also discussed. Compared with the existing one-way two-hop symmetry methods, the proposed scheme uses an asymmetric nested model to obtain additional coding diversity, which significantly improves the performance of the system. Simulation results strongly demonstrate that the proposed semi-blind receivers based on asymmetric scheme outperform the competitive receivers in parameter estimation accuracy.


  1. Aihua, Z., Shouyi, Y., and Guan, G., (2013) Sparse Channel Estimation for MIMO-OFDM Two-Way Relay Network with Compressed Sensing, International Journal of Antennas and Propagation, 8, pp. 1-6. DOI: 10.1155/2013/914734.

  2. Kaur, H., Khosla, Mamta, and Sarin, R.K., (2018) Hybrid channel estimation for MIMO relay systems with Doppler offset influences, International Journal of Communication Systems, 31(3), e3469. DOI: 10.1002/dac.3469.

  3. Liang, X., Ding, Z., and Xiao, C., (2017) On Linear Precoding of Nonregenerative MIMO Relay Networks for Finite-Alphabet Source, IEEE Transactions on Vehicular Technology, 66(11), pp. 9761-9775. DOI: 10.1109/TVT.2017.2717925.

  4. Li, Q. and Yang, L., (2019) Robust Optimization for Energy Efficiency in MIMO Two-Way Relay Networks with SWIPT, IEEE Systems Journal, pp. 1-12. DOI: 10.1109/JSYST.2019.2904721.

  5. Akbarpour-Kasgari, A. and Ardebilipour, M., (2018) Probability-based pilot allocation for MIMO relay Distributed compressed sensing channel estimation, EURASIP Journal on Advances in Signal Processing, 1, 18. DOI: 10.1186/s13634-018-0539-7.

  6. Zhou, G., Li, Y., He, Y. C., Wang, X., and Yu, M., (2018) Artificial fish swarm based power allocation algorithm for MIMO-OFDM relay underwater acoustic communication, IET Communications, 12(9), pp. 1079-1085. DOI: 10.1049/iet-com.2017.0149.

  7. Ximenes, L.R., Favier, G., De Almeida, A.L.F., and Silva, Y.C.B., (2014) PARAFAC-PARATUCK Semi-Blind Receivers for Two-Hop Cooperative MIMO Relay Systems, IEEE Transactions on Signal Processing, 62(14), pp. 3604-3615. DOI: 10.1109/TSP.2014.2328323.

  8. Ximenes, L.R., Favier, G., and De Almeida, A.L.F., (2015) Semi-Blind Receivers for Non- Regenerative Cooperative MIMO Communications Based on Nested PARAFAC Modeling, IEEE Transactions on Signal Processing, 63(18), pp. 4985-4998. DOI: 10.1109/TSP.2015.2454473.

  9. Ximenes, L., Favier, G., and De Almeida, A., (2016) Closed-Form Semi-Blind Receiver For MIMO Relay Systems Using Double Khatri-Rao Space-Time Coding, IEEE Signal Processing Letters, 23(3), pp. 316-320. DOI: 10.110: LSP.2016.2518699.

  10. Freitas, W.D.C., Favier, G., and De Almeida, A.L.F., (2017) Sequential closed-form semi-blind receiver for space-time coded multi-hop relaying systems, IEEE Signal Processing Letters, 24(12), pp. 1773-1777. DOI: 10.1109/LSP.2017.2756846.

  11. Sidiropoulos, N.D. and Budampati, R.S., (2002). Khatri-Rao space-time codes, IEEE Transactions on Signal Processing, 50(10), pp. 2396-2407. DOI: 10.1109/TSP.2002.803341.

  12. Harshman, R.A., (1970) Foundations of the PARAFAC procedure: Model and conditions for an "explanatory" multi-mode factor analysis, UCLA Working papers in phonetics, 16(1).

  13. Kroonenberg, P.M. and Leeuw, J.D., (1980) Principal component analysis of three-mode data by means of alternating least squares algorithms, Psychometrika, 45(1), pp. 69-97. DOI: 10.1007/BF02293599.

  14. De Almeida, A.L.F. and Favier, G., (2013) Double Khatri-Rao Space-Time-Frequency Coding Using Semi-Blind PARAFAC Based Receiver, IEEE Signal Processing Letters, 20(5), pp. 471-474. DOI: 10.1109/LSP.2013.2248149.

  15. Sidiropoulos, N.D. and Bro, R., (2015) On the uniqueness of multilinear decomposition of N way arrays, Journal of Chemometrics, 14(3), pp. 229-239. DOI: 10.1002/1099- 128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N.

  16. Golub, G.H. and Loan, V.C.F., (1996) Matrix Computations. Baltimore, MD, Johns Hopkins University Press. DOI: 10.1007/978-1-4612-5118-7_5.

  17. Favier, G. and De Almeida, A.L.F., (2014) Tensor Space-Time-Frequency Coding With Semi-Blind Receivers for MIMO Wireless Communication Systems, IEEE Transactions on Signal Processing, 62(22), pp. 5987-6002. DOI: 10.1109/tsp.2014.2357781.