Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v76.i15.30
pages 1339-1358


Yu. P. Galuk
St. Petersburg State University, 35 University Ave., St. Petersburg, Peterhoff, 198504 Russia
A. P. Nickolaenko
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
Masashi Hayakawa
Hayakawa Institute of Seismo Electromagnetics Co. Ltd.(Hi-SEM), The University of Electro-Communications (UEC) Alliance Center #521, Advanced & Wireless and Communications Research Center, UEC, Chofu, Tokyo, 182-8585, Japan


Accounting for the actual structure of the lower ionosphere in the global electromagnetic (Schumann) resonance problem is an important and urgent task. The paper analyzes an impact of deviations in the vertical profile of atmosphere conductivity at the night and the day hemispheres on the spatial distribution of electromagnetic field in the Schumann resonance band. The cavity characteristics depend on the atmosphere conductivity profiles, and these are accounted for by using the full wave solution at the day and the night sides of the globe. The electromagnetic problem in a non-uniform cavity is solved with the help of 2D telegraph equation. The displacement of the amplitude maximum of the electric field component from the source geometric antipode is demonstrated at several frequencies for different locations of the field source, and the models are used of the sharp and the smooth day–night transition. We demonstrate that the day-night non-uniformity shifts the antipodal maximum of the vertical electric field amplitude from the source geometric antipode toward the center of the day hemisphere by a distance reaching 300 km.