Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volumen 79, 2020 Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v79.i7.30
pages 567-581

BLIND ESTIMATION OF NOISE VARIANCE FOR 1D SIGNAL DENOISING

A. Kharkov
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. Oliinyk
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. S. Krivenko
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine

ABSTRAKT

Noise or estimation errors are present in any registered signal (sequence of measurements). Due to this, it is often needed to filter signals. To remove noise efficiently, it is desired to know noise variance a priori or to pre-estimate it for the entire recorded signal (if noise is stationary) or signal fragments (if noise variance can change in time). The presence of a signal component makes such estimation complicated since it is difficult to fully separate the signal and the noise. In this paper, we propose and study a method of blind estimation of noise variance based on discrete cosine transform (DCT) and two robust estimates of data scale. We show that the accuracy of the estimation depends on many factors: signal complexity, signal-to-noise ratio, the block size used, the algorithm of local estimate processing, scale estimator applied. Recommendations concerning the method (algorithm) parameters are given.

REFERENZEN

  1. Gold, B., Ellis, D., Morgan, N., Bourlard, H., and Fosler-Lussier, E., (2011) Speech and Audio Signal Processing: Processing and Perception of Speech and Music, USA: Wiley-Interscience, 688 p.

  2. Gotchev, A., Nikolaev, N., and Egiazarian, K., (2001) Improving the transform domain ECG denoising performance by applying interbeat and intra-beat decorrelating transforms, Proc. of ISCAS 2001, Sydney, NSW, 2, pp. 17-20, doi: 10.1109/ISCAS.2001.920995.

  3. Astola, J. and Kuosmanen, P., (1997) Fundamentals of Nonlinear Digital Filtering, Boca Raton (USA): CRC Press LLC, 288 p.

  4. Viunytskyi, O. and Shulgin, V., (2017) Signal Processing Techniques for Fetal Electrocardiogram Extraction (ELNANO), Kyiv, Ukraine, pp. 325-328.

  5. Haykin, S. and Widrow, B. (eds.), (2003) Least-Mean-Square Adaptive Filters, Hoboken, NJ: Wiley- Interscience, 497 p.

  6. Beheshti, S. and Dahleh, M.A., (2013) Noise Variance in Signal De-noising, Proceedings of ICASSP,6, pp. 185-188.

  7. Hwang, H. and Haddad, R.A., (1995) Adaptive median filters: new algorithms and results, J. IEEE Transactions on Image Processing, 4(4), pp. 499-502.

  8. Lukin, V.V., Zelensky, A.A., Tulyakova, N.O., Melnik, V.P. et al., (2000) Locally Adaptive Processing of 1-D Signals Using Z-parameter and Filter Banks, Proc. of NORSIG2000, Kolmarden, Sweden, pp. 195-198.

  9. Donoho, D.L. and Johnstone, I.M., (1995) Adapting to unknown smoothness by wavelet shrinkage, J. of American Statistical Association, 90(11), pp. 1200-1224.

  10. Abosekeen, A., Noureldin, A., and Korenberg, M.J., (2019) Improving the RISS/GNSS Land-Vehicles Integrated Navigation System Using Magnetic Azimuth Updates, IEEE Transactions on Intelligent Transportation Systems, 21(3), 2020, pp. 1250-1263.

  11. Lukin, V.V., Fevralev, D.V., Abramov, S.K., Peltonen, S., and Astola, J., (2008) Adaptive DCT-based 1-D filtering of Poisson and mixed Poisson and impulsive noise, CD ROM Proceedings of LNLA, Switzerland, 8 p.

  12. Astola, J., Katkovnik, V., and Egiazarian, K., (2006) Local Approximation Techniques in Signal and Image Processing, SPIE Press Monograph, PM157.

  13. Oliinyk, V. and Lukin, V., (2020) Time Delay Estimation for Noise-Like Signals Embedded in Non-Gaussian Noise Using Pre-filtering in Channels, 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET - 2020), 6 p.

  14. Abramov, S., Abramova, V., Lukin, V., and Egiazarian, K., (2019) Prediction of signal denoising efficiency for DCT-based filter, Telecommunications and Radio Engineering, 78(13), pp. 1129-1142, doi: 10.1615/TelecomRadEng .v78.i13.10.

  15. Makovoz, D., (2006) Noise Variance Estimation in Signal Processing, Proceedings of 2006 IEEE International Symposium on Signal Processing and Information Technology, pp. 364-370.

  16. Abramov, S.K., Zelensky, A.A., and Lukin, V.V. (2003) Automatic estimation of variance of measurement errors when processing of one-dimensional information signals, Radioelectronic and Computer Systems, 1(1), pp. 5-11.

  17. Oktem, R., Yarovslavsky, L., and Egiazarian, K. (1998). Signal and image denoising in transform domain and wavelet shrinkage: A comparative study, Proceedings of 9th European Signal Processing Conference, EUSIPCO, pp. 1-4.

  18. Rousseeuw, P. and Yohai, V., (1984) Robust Regression by Means of S-estimators, Robust and Nonlinear Time Series Analysis, pp. 256-272.

  19. Rousseeuw, P., Croux, J., and Christophe, C., (1993) Alternatives to the Median Absolute Deviation, Journal of the American Statistical Association, American Statistical Association, 88(424), pp. 1273.

  20. Park, W., Lee, B., and Kim, M., (2019) Fast Computation of Integer DCT-V, DCT-VIII, and DST-VII for Video Coding, IEEE Transactions on Image Processing, 28(12), pp. 5839-5851.


Articles with similar content:

Automatic Robust Procedure for Radar Image Preliminary Analysis and Filtering
Telecommunications and Radio Engineering, Vol.58, 2002, issue 5&6
N. N. Ponomarenko, S. K. Abramov, A. A. Zelensky
FEATURES OF ACOUSTIC NOISE OF SMALL UNMANNED AERIAL VEHICLES
Telecommunications and Radio Engineering, Vol.79, 2020, issue 11
V. I. Leonidov, V. M. Kartashov, Valerii V. Semenets
A BLIND METHOD FOR ADDITIVE NOISE VARIANCE EVALUATION BASED ON HOMOGENEOUS REGION DETECTION USING THE FOURTH CENTRAL MOMENT ANALYSIS
Telecommunications and Radio Engineering, Vol.74, 2015, issue 18
V. V. Abramova
Removal of Mixed Poisson and Impulse Noise in 1-D Signals by Non-Adaptive and Adaptive Nonlinear Filters
Telecommunications and Radio Engineering, Vol.67, 2008, issue 14
A. N. Besedin, S. K. Abramov, S. Peltonen, P. Ye. Yeltsov
APPROACHES TO AUTOMATIC DATA PROCESSING IN HYPERSPECTRAL REMOTE SENSING
Telecommunications and Radio Engineering, Vol.73, 2014, issue 13
Benoit Vozel, M. L. Uss, Kacem Chehdi, N. N. Ponomarenko, V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, S. S. Krivenko