Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v73.i5.30
pages 399-411

DISTINCTIVE FEATURES OF FORMING THE SPACE-TIME MILLIMETER RADIO-WAVE FIELD AT LOW ALTITUDES ABOVE THE SEA SURFACE

V. B. Razskazovsky
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
Yu. F. Logvinov
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine

ABSTRAKT

An impact of the sea surface condition upon the space-time structure of the e.m. field propagation over the above surface causes the range of shipboard radars to suffer certain limitations, thereby impairing an accuracy in measuring the angular coordinates of objects. On account of strong shadowings one can observe an interaction between the illuminating field and the sea waves only. In this context the computational procedures are currently in the initial stage of elaboration. They are aimed at calculating the effects produced during the operation over the millimeter and submillimeter range at angular heights of objects being observed. The parameters of elements interacting with the illuminating e.m. field have been evaluated by means of simulating the sea surface form. The basic physical reradiating mechanisms are determined and the selection of calculated dependences is substantiated. These dependences allowed estimating the path length distribution of coherent and noncoherent intensities of the reradiated field component and its angular spectra at a point of arrival. A special approach to representing the sea surface-reradiated field has been developed. It provides an adequate insight into the previously determined features of the signal amplitude fluctuation spectra of millimeter waves in the over-sea propagation. Thus, the procedure for computing the millimeter and centimeter-wave field over the sea surface has been theoretically grounded. It has likewise been tested via solutions of radiophysical problems at strong shadowings of certain sea surface areas.


Articles with similar content:

A MODEL OF MULTIPATH PROPAGATION OF MILLIMETER RADIO WAVES OVER THE SEA SURFACE AT STRONG SHADOWINGS
Telecommunications and Radio Engineering, Vol.73, 2014, issue 4
Yu. F. Logvinov, V. B. Razskazovsky
ON DIAGNOSTICS OF THE TROPOSPHERE UPON BEYOND‐THE‐HORIZON OCULTATIONS OF THE USW‐SOURCE
Telecommunications and Radio Engineering, Vol.69, 2010, issue 19
M. V. Belobrova, G. A. Alexeev
Microwave Propagation Factor at Small Grazing Angle Over Sea: Transient Domain
Telecommunications and Radio Engineering, Vol.66, 2007, issue 18
Yu. F. Logvinov, V. B. Razskazovsky
Fresnel Formulae in the Time Domain
Telecommunications and Radio Engineering, Vol.59, 2003, issue 7-9
A. G. Nerukh
THE DIFFRACTION MODEL OF WAVE PROPAGATION IN ELEVATION MEASUREMENT OF A RADIATION SOURCE
Telecommunications and Radio Engineering, Vol.69, 2010, issue 5
Yu. F. Logvinov, V. B. Razskazovsky