Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v74.i16.80
pages 1483-1495


A. P. Nickolaenko
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
Yu. P. Galuk
St. Petersburg State University, 35 University Ave., St. Petersburg, Peterhoff, 198504 Russia
Masashi Hayakawa
Hayakawa Institute of Seismo Electromagnetics Co. Ltd.(Hi-SEM), The University of Electro-Communications (UEC) Alliance Center #521, Advanced & Wireless and Communications Research Center, UEC, Chofu, Tokyo, 182-8585, Japan


The search for a realistic vertical conductivity profile of atmosphere remains an update task of great importance for the direct electromagnetic simulations of global electromagnetic (Schumann) resonance. Such a profile is necessary when describing the impact on the ionosphere of the space weather, the pre-seismic activity or other various factors. Knowledge of the regular conductivity profile is of particular importance, since it allows computing of the observed regular parameters of Schumann resonance. Starting from the classic data, we developed the new height conductivity profile of atmosphere in the range from 2 to 98 km. The profile allows obtaining the Schumann resonance parameters consistent with experimental observations. The propagation constant of extremely low frequencies (ELF) radio waves was computed corresponding to this profile by using the rigorous full wave solution. We demonstrate a high correspondence of the frequency dependence obtained to the conventional reference model based on the records of global electromagnetic resonance. The conductivity profiles are also suggested for the ambient day and ambient night conditions. We obtained the propagation constants relevant to these profiles using the full wave solution. The power spectra of Schumann resonance were also computed and compared of the vertical electric field component in the case of uniform global distribution of thunderstorms. Spectra relevant to suggested conductivity profiles were compared with the spectrum obtained in the frameworks of the standard reference model. We also show consistency of the model data obtained with the conductivity profiles with the results of measurements of the radio signals radiated by ELF transmitters.