Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v56.i4-5.100
15 pages

Imaging with Passive Sensing Systems Part 2: Sensor and Method Fusion

Yuriy V. Shkvarko
Visiting professor in the FIMEE, University of Guanajuato, Mexico
Rene Jaime-Rivas
Head of FIMEE at the University of Guanajuato, 36730 Salamanca, Gto. Mexico
Oscar G. Ibarra-Manzano
Guanajuato University, FIMEE, 36730, Salamanca, Gto, Mexico
Victor Ayala-Ramirez
Universidad de Guanajuato FIMEE, Tampico 912, Colonia Bellavista, Salamanca, Guanajuato, 36730 MEXICO
Jose A. Andrade-Lucio
Facultad de Ingenieria Mecánica, Eléctrica y Electrónica, Universidad de Guanajuato. A.P. 215-A, 36730. Salamanca, Gto., México

ABSTRAKT

A combined experiment design and neural network-based approach to the problem of fusing the data of passive monitoring systems with different platforms of sensors is addressed. The two-stage imaging problem treatment is considered: (1) ED-based image formation; (2) image improvement/restoration via system or method fusion. Maximum entropy (ME) a priori image model is incorporated and two aggregation approaches, which incorporate model, measurements and calibration data, are developed. Computationally, the sensor and method fusion is implemented using the unified Hopfield maximum entropy neural network architecture. The results are illustrated by simulation examples.


Articles with similar content:

ANALYSIS OF COMPLEX SYSTEMS USING NEURAL NETWORKS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
Robert E. Uhrig
Analysis of Complex Systems Using Neural Networks
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
Robert E. Uhrig
Probabilistic Approach in Wind Induced Vibrations of Structures
International Journal of Fluid Mechanics Research, Vol.29, 2002, issue 3&4
P. Marek, O. Fischer, M. Pirner
Information-Extreme Algorithm for Optimizing Parameters of Hyperellipsoidal Containers of Recognition Classes
Journal of Automation and Information Sciences, Vol.44, 2012, issue 10
Nikolay N. Budnyk, Vyacheslav V. Moskalenko, Anatoliy S. Dovbysh
SENSOR SYSTEMS FOR AN ON-LINE DIAGNOSTIC EXPERT SYSTEM IN FOSSIL POWER PLANTS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
Alice M. Agogino, William H. Wood III, Young-Jin Kim