Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Druckformat: 0040-2508
ISSN Online: 1943-6009

Volumes:
Volumen 79, 2020 Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v64.i11.20
pages 901-909

Regularization and Enhanced in Radar Images Via Fusing the Maximum Entropy and Variational Analysis Methods (MEVA)

L. J. Morales-Mendoza
CINVESTAV-IPN, Prolong. López Mateos Sur No. 590, Gdl., Jalisco, Mexico
R. F. Vazquez-Bautista
CINVESTAV-IPN, Prolong. López Mateos Sur No. 590, Gdl., Jalisco, Mexico
Jose A. Andrade-Lucio
Facultad de Ingenieria Mecánica, Eléctrica y Electrónica, Universidad de Guanajuato. A.P. 215-A, 36730. Salamanca, Gto., México
Oscar G. Ibarra-Manzano
Guanajuato University, FIMEE, 36730, Salamanca, Gto, Mexico

ABSTRAKT

In this article, we present a new fusion strategy for aggregating both the regularization and the anisotropic diffusion paradigms in radar mages reconstruction. The fusion is mainly addressed to gain the highlight features that are involved, in this case, the robust error norm for Variational Analysis (VA) method and the regularized Maximum Entropy (ME) method-based degrees of freedom. The fused method is so-called the Maximum Entropy-Variational Analysis method (MEVA). The method is developed and computational implemented using the modified Hopfield neural network. Furthermore, we present several selected computer simulation examples where real images are addressed to illustrate the outstanding usefulness of this method.


Articles with similar content:

HASHING OF STRUCTURAL DESCRIPTIONS AT BUILDING OF THE CLASS IMAGE DESCRIPTOR, COMPUTING OF RELEVANCE AND CLASSIFICATION OF THE VISUAL OBJECTS
Telecommunications and Radio Engineering, Vol.77, 2018, issue 13
Ye. О. Peredrii, A. V. Gorokhovatskiy, Volodymyr A. Gorokhovatskyi
Artificial Immune Systems as Means for Inductive Construction of Optimum Models for Complex Objects
Journal of Automation and Information Sciences, Vol.40, 2008, issue 6
Vladimir I. Lytvynenko
Predictive Control of Nonlinear Objects Using Evolving Feedforward Neural Networks
Journal of Automation and Information Sciences, Vol.47, 2015, issue 12
Alexander A. Bezsonov, Oleg G. Rudenko
AUTOMATIC RECOGNITION OF RADAR SIGNAL TYPES BASED ON CNN-LSTM
Telecommunications and Radio Engineering, Vol.79, 2020, issue 4
Q. Guo, S. N. Shulga, Sh. L. Wang, Yu. Zheng, G. Ruan, Ya. Wang
Interactive Method of Recognition of Point Images
Telecommunications and Radio Engineering, Vol.68, 2009, issue 20
M. V. Nevzorova