Abo Bibliothek: Guest
Nanoscience and Technology: An International Journal

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 2572-4258

ISSN Online: 2572-4266

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.7 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.244 SNIP: 0.521 CiteScore™:: 3.6 H-Index: 14

Indexed in

EFFECT OF SURFACE TENSION FORCES ON CHANGES IN THE SURFACE RELIEF OF THE ELASTOMER NANOCOMPOSITE

Volumen 10, Ausgabe 1, 2019, pp. 51-66
DOI: 10.1615/NanoSciTechnolIntJ.2018029558
Get accessGet access

ABSTRAKT

It is proposed to simulate the action of surface tension forces by creating a thin elastic layer on the surface of the material. It is shown that the layer should be considered as an incompressible medium. The changes in the volume of the elastic material are possible only artificially by changing the value of a special parameter that allows one to get the desired effect of the material surface. It is shown that the mechanical properties of the elastic layer should be determined by the refined Neo–Hookean potential. It has been established how the parameters of the potential and the layer thickness are related to the value of the surface tension coefficient. An example of computational modeling the influence of the surface effects on changes in the relief of an elastomeric sample is given. Solid particles of spherical shape covered by a thin layer of a binder are located near the sample boundary. It has been established that the curvature of the material surface leads to the deformation of the elastomeric matrix at the nanoscale level of the material near its boundary with the environment. This deformation is the result of the action of the surface tension forces. This phenomenon should be taken into account during the atomic force microscopy analysis of the structure and properties of elastomeric nanocomposites.

REFERENZEN
  1. Adamcik, J., Berquand, A., and Mezzenga, R., Single-Step Direct Measurement of Amyloid Fibrils Stiffness by Peak Force Quantitative Nanomechanical Atomic Force Microscopy, Appl. Phys. Lett., vol. 98, p. 193701, 2011.

  2. Bhushan, B., Handbook of Micro-Nano-Tribology, New York: Springer, 1999.

  3. Carlsson, S. and Larsson, P.L., On the Determination of Residual Stress and Strain Fields by Sharp Indentation Testing. Part I: Theoretical and Numerical Analysis, Acta Materialia, vol. 49, no. 12, pp. 2179-2191, 2001.

  4. Chen, A., Qian, C., Chen, Y., Zhao, X., and Miao, N., Exploring the Elastic Behavior of Core-Shell Organic-Inorganic Spherical Particles by AFM Indentation Experiments, J. Inorg. Organomet. Polym, vol. 24, no. 6, pp. 1070-1076, 2014.

  5. Chlanda, A., Rebis, J., Kijenska, E., Wozniak, M.J., Rozniatowski, K., Swieszkowski, W., and Kurzydlowski, K.J., Quantitative Imaging of Electrospun Fibers by Peak Force Quantitative Nano-mechanics Atomic Force Microscopy Using Etched Scanning Probes, Micron, vol. 72, pp. 1-7, 2015.

  6. Chrobak, D., Kim, K.H., Kurzydlowski, K.J., and Nowak, R., Nanoindentation Experiments with Different Loading Rate Distinguish the Mechanism of Incipient Plasticity, Appl. Phys. Lett., vol. 103, no. 7, p. 072101, 2013.

  7. Clement, F., Lapra, A., Bokobza, L., Monnerie, L., and Menez, P., Atomic Force Microscopy Investigation of Filled Elastomers and Comparison with Transmission Electron Microscopy Application to Silica-Filled Silicone Elastomers, Polymer, vol. 42, no. 14, pp. 6259-6270, 2001.

  8. Dao, M., Chollacoop, N.V., Van Vliet, K.J., Venkatesh, T.A., and Suresh, S., Computational Modeling of the Forward and Reverse Problems in Instrumented Indentation, Acta Materialia, vol. 49, no. 19, pp. 3899-3918, 2001.

  9. Derjaguin, B.V., Muller, V.M., and Toporov, Y.P., Effect of Contact Deformations on the Adhesion of Particles, J. Colloid Interface Sci., vol. 53, no. 2, pp. 314-326, 1975.

  10. Ding, Y.H., Deng, X.H., Jiang, X., Zhang, P., Yin, J.R., and Jiang, Y., Nanoscale Mechanical Characterization of PMMA by AFM Nanoindentation: A Theoretical Study on the Time-Dependent Viscoelastic Recovery, J. Mater. Sci., vol. 48, no. 9, pp. 3479-3485, 2013.

  11. Drozd, E.S., Chizhik, S.A., and Konstantinova, E.E., Atomic Force Microscopy of Structural and Mechanical Properties of Erythrocyte Membranes, Russ. J. Biomech., vol. 13, no. 4, pp. 22-30, 2009.

  12. Fang, T.H., Wu, C.D., and Kang, S.H., Thermomechanical Properties of Polymer Nanolithography Using Atomic Force Microscopy, Micron, vol. 42, no. 5, pp. 492-497, 2011.

  13. Ferencz, R., Sanchez, J., Blumich, B., and Herrmann, W., AFM Nanoindentation to Determine Young's Modulus for Different EPDM Elastomers, Polymer Testing, vol. 31, no. 3, pp. 425-432, 2012.

  14. Fischer, H., Stadler, H., and Erina, N., Quantitative Temperature-Depending Mapping of Mechanical Properties of Bitumen at the Nanoscale Using the AFM Operated with Peakforce Tapping (TM) Mode, J. Microscopy, vol. 250, pp. 210-217, 2013.

  15. Fischer-Cripps, A.C., Nanoindentation (Mechanical Engineering Series), New York: Springer, 2011.

  16. Gadelrab, K.R., Bonilla, F.A., and Chiesa, M., Densification Modeling of Fused Silica under Nanoindentation, J. Non-Crystalline Solids, vol. 358, no. 2, pp. 392-398, 2012.

  17. Galimzyanov, T.R., Molotkovsky, R.J., Kheyfets, B.B., and Akimov, S.A., Energy of the Interaction between Membrane Lipid Domains Calculated from Splay and Tilt Deformations, JETP Lett., vol. 96, no. 10, pp. 681-686, 2013.

  18. Garishin, O.K., Izyumov, R.I., and Svistkov, A.L., The Investigation Features of the Binder State near the Filler Particles in Elastomeric Composites Using an Atomic Force Microscope, Herald Perm Univ., Ser.: Physics, vol. 39, no. 1, pp. 36-45, 2018.

  19. Golovin, Yu. I., Nanoindentation and Its Capabilities, Moscow: Mashinostroenie Press, 2009.

  20. He, Y., Geng, Y., Yan, Y., and Luo, X., Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography, Nanoscale Res. Lett., vol. 12, p. 544, 2017.

  21. Huang, A., Wang, H., Peng, X., and Turng, L.S., Polylactide/Thermoplastic Polyurethane/Poly-tetrafluoroethylene Nanocomposites with In Situ Fibrillated Polytetrafluoroethylene and Nanomechanical Properties at the Interface Using Atomic Force Microscopy, Polymer Testing, vol. 67, pp. 22-30, 2018.

  22. Jee, A.Y. and Lee, M., Comparative Analysis on the Nanoindentation of Polymers Using Atomic Force Microscopy, Polymer Testing, vol. 29, no. 1, pp. 95-99, 2010.

  23. Johnson, K.L., Kendall, K., and Roberts, A.D., Surface Energy and the Contact of Elastic Solids, Proc. R. Soc. London, A, vol. 324, no. 1558, pp. 301-313, 1971.

  24. Johnson, L.L., Atomic Force Microscopy (AFM) for Rubber, Rubber Chem. Technol., vol. 81, no. 3, pp. 359-383, 2008.

  25. Levin, V.A., Zingerman, K.M., and Freiman, E.I., Consideration of Surface Tension Forces in the Numerical Simulation of Solid-State Phase Transitions in the Case of Finite Deformations, Herald Tver State Univ., Ser. Appl. Math., vol. 29, no. 2, pp. 15-27, 2013.

  26. Li, X., Feng, Y., Chu, G., Ning, N., Tian, M., and Zhang, L., Directly and Quantitatively Studying the Interfacial Interaction Between SiO2 and Elastomer by Using Peak Force AFM, Comput. Commun, vol. 7, pp. 36-41, 2018.

  27. Liu, H., Chen, N., Fujinami, S., Louzguine-Luzgin, D., Nakajima, K., and Nishi, T., Quantitative Nanomechanical Investigation on Deformation of Poly(lactic acid), Macromolecules, vol. 45, pp. 8770-8779, 2012.

  28. Maugis, D., Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model, J. Colloid Interface Sci, vol. 150, no. 1, pp. 243-269, 1992.

  29. Morozov, I.A., Structural-Mechanical AFM Study of Surface Defects in Natural Rubber Vulcanizates, Macromolecules, vol. 49, no. 16, pp. 5985-5992, 2016.

  30. Morozov, I.A., Izumov, R.I., and Garishin, O.K., AFM and FEM Study of Local Elongation of Stretched Filled Rubber Surface, Express Polymer Lett., vol. 12, no. 4, pp. 383-394, 2018.

  31. Morozov, I.A., Garishin, O.K., Shadrin, V.V., Gerasin, V.A., and Guseva, M.A., Atomic Force Microscopy of Structural-Mechanical Properties of Polyethylene Reinforced by Silicate Needle-Shaped Filler, Adv. Mater. Sci. Eng., vol. 2016, p. 8945978, 2016a.

  32. Morozov, I.A., Mamaev, A.S., Osorgina, I.V., Lemkina, L.M., Korobov, V.P., Belyaev, A.Y., Porozova, S.E., and Sherban, M.G., Structural-Mechanical and Antibacterial Properties of a Soft Elastic Polyurethane Surface after Plasma Immersion N2+ Implantation, Mater. Sci. Eng. C, vol. 62, pp. 242-248, 2016b.

  33. Nagornov, Yu.S., The Method for Determining the Intracellular Pressure of Erythrocytes According to Atomic Force Microscopy. Part 1. Theory and Numerical Calculation, Nauka. Mysl: Electron. Periodic. J., vol. 4, pp. 46-58, 2016.

  34. Nagornov, Yu.S., Pahomova, R.A., Zhilyaev, I.V., and Voronova, E.A., Erythrocyte Morphology Modeling and Calculation of Intracellular Pressure According to Atomic Force Microscopy Data, Russ. J. Biomech, vol. 19, no. 4, pp. 398-408, 2015.

  35. Nguyen, H.K., Fujinami, S., and Nakajima, K., Elastic Modulus of Ultrathin Polymer Films Characterized by Atomic Force Microscopy: The Role of Probe Radius, Polymer, vol. 87, pp. 114-122, 2016.

  36. Oksengendler, B.L. et al., To the Problem of the Surface Tension of Nanoparticles, Izv. Akad. Inzh. Nauk im. A.M. Prokhorova (Proc. of the A.M. Prokhorov Academy of Engineering Sciences), vol. 2, pp. 11-14, 2015.

  37. Osher, S., Level Set Methods: An Overview and Some Recent Results, J. Comput. Phys., vol. 169, pp. 463-502, 2001.

  38. Pettersson, T., Hellwig, J., Gustafsson, P.J., and Stenstrom, S., Measurement of the Flexibility of Wet Cellulose Fibers Using Atomic Force Microscopy, Cellulose, vol. 24, no. 10, pp. 4139-4149, 2017.

  39. Reggente, M., Rossi, M., Angeloni, L., Tamburri, E., Lucci, M., Davoli, I., Terranova, M.L., and Passeri, D., Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study, JOM, vol. 67, no. 4, pp. 849-857, 2015.

  40. Sethain, J.A., Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge: Cambridge University Press, 1999.

  41. Tiwari, A., Nanomechanical Analysis of High Performance Materials, New York: Springer, 2013.

  42. Tonkov, L.Ye., Numerical Modeling of the Dynamics of a Viscous Fluid Drop by the Level Set Method, Herald Udmurt Univ., vol. 3, pp. 134-140, 2010.

  43. Uzhegova, N.I. and Svistkov, A.L., A New Model for Contact Interaction between an Atomic Force Microscope Probe and a Sample, Nanosci. Technol.: An Int. J., vol. 6, no. 3, pp. 179-191, 2015.

  44. Uzhegova, N.I., Svistkov, A.L., Lauke, B., and Heinrich, G., The Influence of Capillary Effect on Atomic Force Microscopy Measurements, Int. J. Eng. Sci., vol. 75, pp. 67-78, 2014.

  45. Vanlandingham, M.R., McKnight, S.H., Palmese, G.R., Eduljee, R.F., Gillespie, J.W., and McCu- lough, J.R., Relating Elastic Modulus to Indentation Response Using Atomic Force Microscopy, J. Mater. Sci. Lett, vol. 16, pp. 117-119, 1997.

  46. Wong, S., Haberl, B., Williams, J.S., and Bradby, J.E., Phase Transformation Dependence on Initial Plastic Deformation Mode in Si via Nanoindentation, Exp. Mech., vol. 57, no. 7, pp. 1037-1043, 2017.

  47. Xu, F., Xin, Y., and Li, T., Friction-Induced Surface Textures of Liquid Crystalline Polymer Evaluated by Atomic Force Microscopy, Spectroscopy And Nanoindentation, Polymer Testing, vol. 68, pp. 146-152, 2018.

  48. Yew, Z.T., Olmsted, P.D., and Paci, E., Free Energy Landscapes of Proteins: Insights from Mechanical Probes, Single-Mol. Biophys, vol. 146, pp. 395-417, 2012.

  49. Zhang, D., Wang, X., Song, W., Sun, Z., He, L.J., Han, B., and Lei, Q.Q., Analysis of Crystallization Property of LDPE/Fe3O4 Nano-Dielectrics Based on AFM Measurements, J. Mater. Sci.: Mater. Electron, vol. 28, no. 4, pp. 3495-3499, 2017.

REFERENZIERT VON
  1. Svistkov Alexander L., Izyumov Roman I., Influence of interface phenomena on the features of interaction between the probe of atomic force microscope and soft material, Mechanics of Materials, 148, 2020. Crossref

  2. Izyumov R I, Kislitsyn V D, Svistkov A L, Semicontact AFM Mode for Fast Determining the Subsurface Structure of Filled Elastomers, Journal of Physics: Conference Series, 1945, 1, 2021. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain