Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Druckformat: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2019028195
pages 341-354

PYROLYSIS BEHAVIOR OF A PARAFFIN-BASED THERMOPLASTIC POLYMER USED IN HYBRID ROCKET FUEL

Ayana Banno
Chiba Institute of Technology, Narashino, Chiba, 275-0016, Japan
Yutaka Wada
Chiba Institute of Technology, Tsudanuma 2-17-1, Narashino, Chiba 275-0016, Japan
Yuji Mishima
Kobe Material Testing Laboratory Co., Ltd., Taito, Tokyo, 110-0015, Japan
Takahisa Tsugoshi
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8560, Japan
Nobuji Kato
Katazen Corporation, Obu, Aichi, 474-0011, Japan
Keiichi Hori
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa 252-5210, Japan
Ryo Nagase
Chiba Institute of Technology, Narashino, Chiba, 275-0016, Japan

ABSTRAKT

Preliminary experimental studies on the flash pyrolysis behavior of low-melting-temperature thermoplastic (LT) were conducted under typical hybrid rocket operation conditions to obtain the decomposition characteristics of the fuel. LT fuel is a paraffin-added thermoplastic elastomer used in hybrid rocket fuel or solid propellant binders. The temperature profile at or near the surface was measured at 2 MPa chamber pressure and 50 kg m-2 s-1 oxidizer mass flux by a 25 μm thermocouple to estimate the phase structure of the fuel. The paraffin oil was flash pyrolyzed in a pyrolysis temperature range of 758 K to 1,313 K (maximum heating rate: 6,400 K s-1) with a gas chromatography mass spectrometer. Under each temperature condition, the paraffin oil produced a unique pyrolysis mass-spectrometry spectrum. In high-temperature regions, the mass spectra indicate lower molecular weight-range products. Benzene, methylbenzene, and vinylbenzene were obtained as pyrolysis products from the paraffin oil at a pyrolysis temperature of 1,037 K. These results suggest that the formation of aromatic compounds dominated the paraffin-oil pyrolysis process. The pyrolysis behavior of LT fuel was observed by combining the results of the LT-fuel temperature profile and the pyrolysis process in paraffin oil. The result shows that decomposing the LT fuel may form aromatic compounds around the burning surface.

REFERENZEN

  1. Arisawa, H. and Brill, T.B., (1996) Flash Pyrolysis of Hydroxyl-Terminated Polybutadiene (HTPB) I: Analysis and Implications of the Gaseous Products, Combust. Flame, 106(1-2), pp. 131-143.

  2. Chang, P., Wada, Y., Garg, A., Nakayama, H., Kimura, M., and Hori, K., (2015) Combustion and Performance Studies of Glycidyl Azide Polymer and Its Mixtures as Hybrid Rocket Fuel, Int. j. Energetic Mater. Chem. Propuls, 14(3), pp. 221-239.

  3. Chiaverini, M.J., Harting, G.C., Lu, Y.-C., Kuo, K.K., Peretz, A., Jones, H.S., Wygle, B.S., and Arves, J.P., (1999) Pyrolysis Behavior of Hybrid-Rocket Solid Fuels under Rapid Heating Conditions, J. Propuls. Power, 15(6), pp. 888-895.

  4. Gascoin, N., Fau, G., Gillard, P., and Mangeot, A., (2013) Experimental Flash Pyrolysis of High Density Polyethylene under Hybrid Propulsion Conditions, J. Anal. Appl. Pyrol., 101, pp. 45-52.

  5. Hasegawa, H., Isochi, H., Otabe, H., Uematsu, T., Kato, N., Morita, Y., Hori, K., and Akiba, R., (2017) Erosive Burning of Low Melting Point Thermoplastic Solid Propellant, in Proc. of Space Transportation Symp. FY2016, pp. 1-7 (in Japanese).

  6. Isochi, H., Otabe, H., Uematsu, T., Kato, N., Hori, K., Morita, Y., and Akiba, R., (2016) The Low Cost Rocket with Low Melting Temperature Thermoplastic Propellant, in 60th Space Science and Technology Alliance Lecture Meeting (in Japanese).

  7. Kashiwagi, T., (1994) Polymer Combustion and Flammability-Role of the Condensed Phase, in Symp. (Int.) Combust., 25(1), pp. 1423-1437.

  8. Kawabata, Y., Banno, A., Wada, Y., Ozawa, K., Shimada, T., Kato, N., Hori, K., and Nagase, R., (2018) Experimental Investigation of Fuel Regression Rate of Low-Melting-Point Thermoplastic Fuels in the Altering-Intensity Swirling-Oxidizer-Flow-Type Hybrid Rocket Engine, Trans. Japan Soc. Aeronaut. Space Sci. Aerospace Technol. Japan, 16(3), pp. 267-273.

  9. Sinditskii, V. P. , Egorshev, V. Y. , Serushkin, V. V. , and Filatov, S .A . , (2012) Combustion of Energetic Materials Controlled by Condensed-Phase Reactions, Combust. Explos. Shock Waves, 48(1), pp. 81-99.

  10. Takahashi, K., Agglomeration and Ignition of Aluminum Particles in Reaction Zone near Burning Surface of AP Composite Propellants, PhD, Nihon University (in Japanese).

  11. Tsugoshi, T., (2018) Revolution of Evolved Gas Analysis/Mass Spectrometry, Bunseki Kagaku, 67(3), pp. 135-143.

  12. Wada, Y., Jikei, M., Kato, R., Kato, N., and Hori, K., (2012) Application of Low Melting Point Thermo-plastics to Hybrid Rocket Fuel, Trans. Japan Soc. Aeronaut. Space Sci. Aerospace Technol. Japan, 10, pp. 1-5.

  13. Wada, Y., Kato, R., Kato, N., and Hori, K., (2013) Small Rocket Launch Experiment Using Low Melting Point Thermoplastic Fuel/N2O Hybrid Rocket, in Proc. of 49th AIAA/ASME/SAE/AS-EE Joint Propulsion Conf, San Jose, CA, July 14-17, p. 4050.

  14. Wada, Y., Kawabata, Y., Shinnakazaki, K., Kato, R., Kato, N., and Hori, K., (2014) A Study on Combustion Efficiency Improvement of Low Melting Temperature Thermoplastics as a Hybrid Rocket Fuel, Trans. Japan Soc. Aeronaut. Space Sci. Aerospace Technol. Japan, 12(29), pp. 4-8.

  15. Wada, Y., Kawabata, Y., Kato, R., Kato, N., and Hori, K., (2016) Observation of Combustion Behavior of Low Melting Temperature Fuel for a Hybrid Rocket Using Double Slab Motor, Int. J. Energetic Mater Chem. Propuls., 15(5), pp. 351-369.


Articles with similar content:

CHARACTERIZATION OF CONDENSED-PHASE CHEMICAL REACTIONS OF RDX AND NITRAMINE-BASED PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
J. Eric Boyer, Yeu-Cherng Lu
COMBUSTION PHENOMENA OF BORON CONTAINING PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Volker Weiser, K. Menke, Wilhelm Eckl, Th. Rohe, W. Liehmann, Norbert Eisenreich
INSTANTANEOUS REGRESSION BEHAVIOR OF HTPB SOLID FUELS BURNING WITH GOX IN A SIMULATED HYBRID ROCKET MOTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Yeu-Cherng Lu, Martin J. Chiaverini, Nadir Serin, David K. Johnson
GLYCIDYL AZIDE POLYMER−COMBUSTION MECHANISM AND ITS APPLICATION TO HYBRID ROCKET MOTORS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 4
Makihito Nishioka, Keiichi Hori
DIFFUSION FLAME STUDIES OF SOLID FUELS WITH NITROUS OXIDE
International Journal of Energetic Materials and Chemical Propulsion, Vol.19, 2020, issue 1
J. Eric Boyer, Terrence L. Connell, Jr., Paige K. Nardozzo, Gregory Young, Richard A. Yetter