Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Druckformat: 1064-2315
ISSN Online: 2163-9337

Volumes:
Volumen 52, 2020 Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v44.i9.30
pages 24-42

Identification of Multivariable Systems Using Steady-state Mode Parameters

Vyacheslav F. Gubarev
Institute of Space Research NAS and SSA of Ukraine, Kiev, Ukraine
Sergey V. Melnichuk
Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev

ABSTRAKT

The paper has developed the updated method for identification of multivariable linear systems described by the state space model using the approximate steady-state mode parameters which are defined by the integration of experimentally obtained output signals under the harmonic excitation on the input. The method allows one to update the model of dimension maximum permissible by stability condition to make it possible to approximate the real system output with accuracy consistent with errors in the obtained data.

REFERENZEN

  1. Alexandrov A.G., Method of frequency parameters.

  2. Alexandrov A.G. , Finite-frequency identification: multivariable object.

  3. Orlov Yu.F. , Identification by frequency parameters.

  4. Orlov Yu.F. , Structural identification of multivariable object.

  5. Orlov Yu.F. , Identification by the frequency parameters under parallel tests.

  6. Gubarev V.F. , Rational approximation of systems with distributed parameters.

  7. Gubarev V.F. , Method of iterative identification of multidimensional systems by uncertain data. Part I. Theoretical aspects.

  8. Golub G.H.; van Loan Ch.F. , Matrix computations [Russian translation].


Articles with similar content:

Statistical Analysis of Linear Filters Driven By Non-White Noise
Telecommunications and Radio Engineering, Vol.56, 2001, issue 6&7
Vladimir A. Kazakov, Ruben P. Hernandez
Algorithm for Determination of the Volume of Steganographic Embedment by the Method of Statistical Analysis of the Histograms of DCT Coefficients of JPEG Format Images
Telecommunications and Radio Engineering, Vol.65, 2006, issue 11-15
V. A. Baranov, O. V. Gatilov
A PARAMETER SUBSET SELECTION ALGORITHM FOR MIXED-EFFECTS MODELS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Ralph Smith, Kathleen Schmidt
DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES
Telecommunications and Radio Engineering, Vol.76, 2017, issue 19
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
STATISTICAL RADIO PHYSICS
Reducing the Amount of Recorded Data in a Noise Radar Using Spectral Processing Algorithms

Telecommunications and Radio Engineering, Vol.68, 2009, issue 18
Yu. A. Shiyan, K. A. Lukin