Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Druckformat: 1064-2315
ISSN Online: 2163-9337

Volumen 52, 2020 Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v45.i2.20
pages 13-23

Quadratic Systems with Delay

Irada A. Dzhalladova
Vadym Hetman Kiev National Economic University
Denis Ya. Khusainov
Kiev National Taras Shevchenko University, Kiev


The systems of nonlinear differential equations with constant delay are under consideration. Nonlinearity of quadratic type is investigated. The system of equations are presented in special unified vector-matrix form. We investigate stability of stationary position of equilibrium state, which is located in the first quadrant of coordinate system. The second Lyapunov method is accepted as techniques for investigation of quadratic functions type with the Razumikhin condition.


  1. Volterra V. , Mathematical theory of struggle for existence [Russian translation].

  2. Smith J. , Models in ecology [Russian translation].

  3. Kolmanovskiy V.B. , Equations with after-effect and mathematical modeling.

  4. Khusainov D.Ya., Dzhalladova I.A., Shatyrko O.A. , Estimate of stability domain of differential system with quadratic right-hand part.

  5. Demidovich B.P. , Lectures on mathematical theory of stability [in Russian].

  6. Elsgolts L.E. , Introduction to differential equations with deviating argument [in Russian].

  7. Kolmanovskiy V.B., Nosov V.R. , Stability and periodic modes of controllable systems with after-effect [in Russian].

  8. Khusainov D.Ya., Shatyrko A.V. , The Lyapunov functions method in investigation of stability of differential-functional systems [in Russian].

  9. Chikriy A.A. , Conflict-controlled processes [in Russian].

Articles with similar content:

Investigation of Absolute Stability of Nonlinear Systems of Special Kind with Aftereffect by the Lyapunov Functions Method
Journal of Automation and Information Sciences, Vol.43, 2011, issue 7
Denis Ya. Khusainov, Andrey V. Shatyrko
Necessary Optimality Conditions in a Discrete Control Problem with Nonlocal Boundary Conditions
Journal of Automation and Information Sciences, Vol.44, 2012, issue 9
Kamil Bayramali oglu Mansimov
Minimax Estimation for Solutions of Transmissions Problems for Elliptic Equations under Absence of Information about Conjugating Conditions
Journal of Automation and Information Sciences, Vol.32, 2000, issue 12
Yuriy K. Podlipenko, Amer Mansor Dababneh
On Stabilization of Motion of One Class of Nonlinear Systems
Journal of Automation and Information Sciences, Vol.34, 2002, issue 1
Dmitriy V. Lebedev
Computer Simulation for Dynamics of Elastic Multi-link Space Robots-manipulators
Journal of Automation and Information Sciences, Vol.31, 1999, issue 7-9
Tatyana V. Zavrazhina