Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Druckformat: 1064-2315
ISSN Online: 2163-9337

Volumes:
Volumen 52, 2020 Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v48.i5.40
pages 42-54

Land Cover Changes Analysis Based on Deep Machine Learning Technique

Nataliya N. Kussul
Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev, Ukraine
Nikolay S. Lavreniuk
Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev
Andrey Yu. Shelestov
National University of Life and Environmental Sciences of Ukraine, Kiev
Bogdan Ya. Yailymov
Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev
Igor N. Butko
National Center of Space Facilities Control and Test of State Space Agency of Ukraine, Kiev

ABSTRAKT

The methodology for solving the problem of processing of large amount of remote sensing data is proposed. The hierarchical structure of the model of deep learning method is based on neural network approach and geospatial analysis methods. This methodology was applied for high resolution land cover change mapping for Ukraine territory from 1990 to 2010. The efficiency of this approach was shown for non-arable agricultural area and changes analysis, particularly, in the eastern regions during the occupation period.


Articles with similar content:

The Norm and Variability of the Annual Flow of Rivers of Ukraine
Hydrobiological Journal, Vol.35, 1999, issue 2
P. F. Vishnevskiy, A. I. Shereshevskiy
Multi-Factor Evaluation of Natural Person Solvency by Expert Knowledge Integration
Journal of Automation and Information Sciences, Vol.52, 2020, issue 3
Aliaga Alekper Ogly Aliyev
Prospects of Using Unmanned Aerial Vehicle for Assessing Climate-Making Properties of Park Tree Species Using Kiev A.V. Fomin Botanical Garden as an Example
Journal of Automation and Information Sciences, Vol.50, 2018, issue 4
Taras A. Kazantsev , Nataliya Yu. Taran, Vladislava A. Badanina , Oxana A. Futornа , Nataliya B. Svietlova
Optimization of Call Services in Switching Nodes of a Corporate Multiservice Communication Network
Telecommunications and Radio Engineering, Vol.68, 2009, issue 17
I. A. Saitov, A. G. Bogachev, A. V. Korolev, R. B. Tregubov
Farmland State Estimation Based on Agrophytocenoses Classification and Remote Sensing Satellite Data
Journal of Automation and Information Sciences, Vol.48, 2016, issue 5
Yulia V. Prutsko , Lyudmila V. Podgorodetskaya , Oleg V. Semeniv