Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Automation and Information Sciences
SJR: 0.238 SNIP: 0.464 CiteScore™: 0.27

ISSN Druckformat: 1064-2315
ISSN Online: 2163-9337

Volumes:
Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/J Automat Inf Scien.v38.i5.30
pages 23-33

Method of Solving Nonlinear Programming Using Variable Dimension Basis

Yuriy D. Shcherbashin
National Technical University of Ukraine "Kiev Polytechnical Institute", Ukraine

ABSTRAKT

Consideration is given to approximation programming method with gradually increasing/decreasing basis dimension. If the solution is found in the vertex of limiting polyhedron, i.e., on the boundary of intersection of n-limiting hyperplane (n — dimension of space of searched variables), then the basis dimension reaches n; if the solution is on the faces or edges of limiting polyhedron, then the basis dimension decreases. With the solution found inside the admissible domain, then the basis dimension is zero and X-trace on the last steps corresponds to the fastest descent (ascent) algorithm. The other feature of the method is the application of quadratic approximation of discrepancy Δ φi (X) variation along admissible appropriate direction — ray σ — linear combination of edges of current basis cone. The quadratic approximation method enables us to increase the step length in comparison with the simplest methods of approximation programming.


Articles with similar content:

On Solution of Continuous Stochastic Problem of Optimal Partitioning with Objective Functional Recovery
Journal of Automation and Information Sciences, Vol.32, 2000, issue 3
Elena M. Kiseleva, Konstantin A. Kuznetsov
APPLICATION OF REPRODUCING KERNEL ALGORITHM FOR SOLVING DIRICHLET TIME-FRACTIONAL DIFFUSION-GORDON TYPES EQUATIONS IN POROUS MEDIA
Journal of Porous Media, Vol.22, 2019, issue 4
Omar Abu Arqub, Nabil Shawagfeh
On Determination of Solution of Unilateral Quadratic Matrix Equation
Journal of Automation and Information Sciences, Vol.43, 2011, issue 11
Vladimir B. Larin
Systematic comparison of the discrete dipole approximation and the finite difference time domain method
ICHMT DIGITAL LIBRARY ONLINE, Vol.14, 2007, issue
Jun Q. Lu, Maxim A. Yurkin, Alfons G. Hoekstra, R. Scott Brock
Modified Extragradient Method with Bregman Divergence for Variational Inequalities
Journal of Automation and Information Sciences, Vol.50, 2018, issue 8
Vladimir V. Semenov