Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Immunology
Impact-faktor: 1.352 5-jähriger Impact-Faktor: 3.347 SJR: 1.022 SNIP: 0.55 CiteScore™: 2.19

ISSN Druckformat: 1040-8401
ISSN Online: 2162-6472

Volumes:
Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v37.i2-6.10
pages 75-125

The Nature of Selection on the Major Histocompatibility Complex

Victor Apanius
Institute of Parasitology, McGill University-Macdonald College, 21,111 Lakeshore Rd., Ste-Anne-de-Bellevue, Quebec, Canada,Department of Biological Sciences, Florida International University, University Park, Miami, FL 33199
Dustin Penn
Department of Zoology, University of Florida, Gainesville, FL 32611; Department of Biology, University of Utah, Salt Lake City, UT 84112
Patricia R. Slev
Department of Pathology and Laboratory Medicine, University of Florida, Gainesville, FL 32610
L. Ramelle Ruff
Department of Pathology and Laboratory Medicine, University of Florida, Gainesville, FL 32610
Wayne K. Potts
Department of Biology, University of Utah, Salt Lake City, UT 84112; Department of Pathology and Laboratory Medicine, University of Florida, Gainesville, FL 32610

ABSTRAKT

Only natural selection can account for the extreme genetic diversity of genes of the major histocompatibility complex (MHC). Although the structure and function of classic MHC genes is well understood at the molecular and cellular levels, there is controversy about how MHC diversity is selectively maintained. The diversifying selection can be driven by pathogen interactions and inbreeding avoidance mechanisms. Pathogen-driven selection can maintain MHC polymorphism based on heterozygote advantage or frequency-dependent selection due to pathogen evasion of MHC-dependent immune recognition. Empirical evidence demonstrates that specific MHC haplotypes are resistant to certain infectious agents, while susceptible to others. These data are consistent with both heterozygote advantage and frequency-dependent models. Additional research is needed to discriminate between these mechanisms. Infectious agents can precipitate autoimmunity and can potentially contribute to MHC diversity through molecular mimicry and by favoring immunodominance. MHC-dependent abortion and mate choice, based on olfaction, can also maintain MHC diversity and probably functions both to avoid genome-wide inbreeding and produce MHC-heterozygous offspring with increased immune responsiveness. Although this diverse set of hypotheses are often treated as competing alternatives, we believe that they all fit into a coherent, internally consistent thesis. It is likely that at least in some species, all of these mechanisms operate, leading to the extreme diversification found in MHC genes.


Articles with similar content:

The Nature of Selection on the Major Histocompatibility Complex
Critical Reviews™ in Immunology, Vol.17, 1997, issue 2
Wayne K. Potts, L. Ramelle Ruff, Patricia R. Slev, Victor Apanius, Dustin Penn
Antigen Receptor−Intrinsic Non-Self: The Key to Understanding Regulatory Lymphocyte−Mediated Idiotypic Control of Adaptive Immune Responses
Critical Reviews™ in Immunology, Vol.36, 2016, issue 1
Hilmar Lemke
Neurotrophic Factors in Brain Synaptic Plasticity
Critical Reviews™ in Neurobiology, Vol.11, 1997, issue 1
Mako Saito, Hiroyuki Nawa, Takashi Nagano
Important Biology Events and Pathways in Brucella Infection and Implications for Novel Antibiotic Drug Targets
Critical Reviews™ in Eukaryotic Gene Expression, Vol.23, 2013, issue 1
Guangjun Gao, Jie Xu
Human TCR as Antigen: Homologies and Potentially Cross-Reactive HLA-DR2-Restricted Epitopes Within the AV and BV CDR2 Loops
Critical Reviews™ in Immunology, Vol.20, 2000, issue 1
Arthur A. Vandenbark, Halina Offner, Abigail Buenafe, David Barnes, Gregory G. Burrows, Sandra Law, Yuan K. Chou, Tom Finn, Nicole Culbertson