Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Immunology
Impact-faktor: 1.352 5-jähriger Impact-Faktor: 3.347 SJR: 1.022 SNIP: 0.55 CiteScore™: 2.19

ISSN Druckformat: 1040-8401
ISSN Online: 2162-6472

Volumes:
Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v30.i3.40
pages 271-275

Sensitive Molecular Diagnostic Assays to Mitigate the Risks of Asymptomatic Bacterial Diseases of Plants

N. W. Schaad
US Department of Agriculture, Agriculture Research Service, Foreign Disease-Weed Science, Research Unit, Ft. Detrick, Maryland
E. Schuenzel
US Department of Agriculture, Agriculture Research Service, Foreign Disease-Weed Science, Research Unit, Ft. Detrick, Maryland

ABSTRAKT

Our highly concentrated monoculture makes crops vulnerable to pests and diseases. An increase in emerging non-indigenous bacterial diseases poses a real threat to US agriculture. The United States has 100,000 miles of shoreline and 6,000 miles of border, making possible easy introduction of crop pests and diseases. Most threatening to crops are the cross-domain enteric bacteria. In contrast to animals, crops have hundreds of major diseases and development of molecular-based detection protocols for each pathogen is impossible with current technology. Rathayibacter toxicus, a neurotoxin-producing bacterium transmitted by a seed gall nematode, is an example of a high-risk Select Agent. The bacterium infects seeds of grasses without showing any symptoms, often resulting in the death of grazing cattle. A prerequisite for the control of any disease is sensitive detection and proper identification of the causal organism. Detecting bacteria in samples of plants showing symptoms is relatively simple, whereas detection in asymptomatic tissues is difficult due to the extremely low numbers of the target pathogen present. Rapid serological assays work well with symptomatic tissues but not from asymptomatic tissue when bacteria levels are below sensitivity limits. Classical agar-plating assays are 1,000 fold more sensitive then serology or PCR. However, agar plating assays take from 3 to 5 days and require pathogenicity tests to confirm the identity. PCR-based assays allow for rapid, accurate identification but are insensitive due to use of 1 μL sample in comparison to 100 μL used for agar plating. To overcome this disadvantage, an enrichment technique termed BIO-PCR can be used in combination with agar plating for detection with asymptomatic tissues. The key to developing a successful BIO-PCR protocol is to determine the time required for development of pin point-size colonies to appear. For most plant pathogens 15 to 24 hours is sufficient time, whereas for the cross-domain bacteria only 1 to 2 hours is needed. For greater sensitivity, BIO-PCR can be combined with 96-well microliter plates with membranes to detect a single viable cell per 10 mL of an aqueous sample.


Articles with similar content:

The Use of an Atmospheric Pressure Plasma Jet to Inhibit Common Wound-Related Pathogenic Strains of Bacteria
Plasma Medicine, Vol.6, 2016, issue 1
Marc C. Jacofsky, Courtney McDonnell, Emilia M Kulaga, David J. Jacofsky
Nonthermal Atmospheric Pressure Plasma Decontamination of Protein-Loaded Biodegradable Nanoparticles for Nervous Tissue Repair
Plasma Medicine, Vol.1, 2011, issue 3-4
Gregory Fridman, Jason Coleman, Anthony Lowman, Ross Goren, Adam Yost
Tumor-Suppressing Properties of Crocus sativus L.: Nature as an Anti-Cancer Agent
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 3-4
Olti Alexandra Nikola, Eleni Kakouri, Kostas Bethanis, George I. Lambrou, Petros A. Tarantilis, Kyriaki Hatziagapiou
Cell Therapy in Duchenne Muscular Dystrophy Treatment: Clinical Trials Overview
Critical Reviews™ in Eukaryotic Gene Expression, Vol.25, 2015, issue 1
Maria A. Ciemerych, Anna Bajek, Edyta Brzoska, Tomasz Drewa, Tomasz Kloskowski, Dorota Porowinska
Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes
Plasma Medicine, Vol.6, 2016, issue 3-4
P. J. Cullen, Ivan Vilaró, Kevin M. Keener, Paula Bourke, Edurne Gaston, N. N. Misra, Dana Ziuzina, J. P. Mosnier