Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Immunology
Impact-faktor: 1.404 5-jähriger Impact-Faktor: 3.347 SJR: 0.706 SNIP: 0.55 CiteScore™: 2.19

ISSN Druckformat: 1040-8401
ISSN Online: 2162-6472

Volumen 40, 2020 Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.2020033244
pages 329-342

Defining Early Life Stress as a Precursor for Autoimmune Disease

Jamie Y. Choe
Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107; Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas 76107
Maya Nair
Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
Riyaz Basha
Graduate School of Biomedical Sciences, The University of North Texas Health Science Center, Fort Worth, Texas; Department of Pediatrics and Women's Health, Texas College of Osteopathic Medicine, The University of North Texas Health Science Center, Fort Worth, Texas
Byung-Jin Kim
Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
Harlan P. Jones
Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107


Childhood exposure to traumatic events, termed early life stress (ELS), is now widely recognized for causing long-term negative health effects that may not manifest until adulthood. Allostatic load (AL) describes the cumulative "wear-and-tear" effects of chronic stress on the body that may adversely affect human health by accelerating other disease processes. Recent epidemiological studies have reported higher stress levels in industrialized countries and trends of increasing prevalence in autoimmune diseases during recent decades. To elucidate mechanisms of stress-related immune dysregulation, most animal studies up to now have focused on AL and stress-triggered events occurring in adults but have not explored ELS in the context of autoimmune disorders. We have identified a current gap in understanding the impact of ELS on immune system ontogeny and its potential for priming genetically susceptible individuals who are at increased risk for autoimmune diseases later in life, through mechanisms involving neuroendocrine-immune cross talk. In this review, we highlight the intersection between stress and immune function, with a focus on ELS as consequential for increased autoimmune disorder risks later in life.


  1. aarda.org [homepage on the Internet]. Autoimmune disease list. Eastpoint, MI: American Autoimmune Related Diseases Association, Inc. [updated 2017 May 10; cited 2019 Oct 1]. Available from: https://www.aarda.org/diseaselist/. .

  2. niaid.nih.gov [homepage on the Internet]. Autoimmune diseases. National Institute of Allergy and Infectious Diseases. Bethesda, MD: National Institutes of Health [updated 2017 May 2; cited 2019 Nov 20]. Available from: https://www. niaid.nih.gov/diseases-conditions/autoimmune-diseases. .

  3. Nagata S, Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol Today. 1995;16(1):39-43. .

  4. Wu J, Zhou T, Zhang J, He J, Gause WC, Mountz JD. Correction of accelerated autoimmune disease by early replacement of the mutated lpr gene with the normal Fas apoptosis gene in the T cells of transgenic MRL-lpr/lpr mice. Proc Natl Acad Sci. 1994;91(6):2344-8 .

  5. Mondino A, Khoruts A, Jenkins MK. The anatomy of T-cell activation and tolerance. Proc Natl Acad Sci. 1996; 93(6):2245-52. .

  6. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21: 305-34. .

  7. Smith DA, Germolec DR. Introduction to immunology and autoimmunity. Environ Health Perspect. 1999;107(Suppl 5):661-5. .

  8. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science. 1970;169(3950):1042-9. .

  9. Hodgkin PD, Basten A. B cell activation, tolerance and antigen-presenting function. Curr Opin Immunol. 1995;7(1): 121-9. .

  10. Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223-43. .

  11. Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME. Definition of human autoimmunity-autoantibodies versus autoimmune disease. Autoimmun Rev. 2010;9(5):A259-66. .

  12. Molina V, Shoenfeld Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity. 2005;38(3):235-45. .

  13. Kleinau S, Lorentzen J, Klareskog L. Role of adjuvants in turning autoimmunity into autoimmune disease. Scand J Rheumatol Suppl. 1995;101:179-81. .

  14. Ruscio AM, Hallion LS, Lim CCW, Aguilar-Gaxiola S, AlHamzawi A, Alonso J, Andrade LH, Borges G, Bromet EJ, Bunting B, De Almeida JMC, Demyttenaere K, Florescu S, De Girolamo G, Gureje O, Haro JM, He Y, Hinkov H, Hu C, De Jonge P, Karam EG, Lee S, Lepine JP, Levinson D, Mneimneh Z, Navarro-Mateu F, Posada-Villa J, Slade T, Stein DJ, Torres Y, Uda H, Wojtyniak B, Kessler RC, Chatterji S, Scott KM. Cross-sectional comparison of the epidemiology of DSM-5 generalized anxiety disorder across the globe. JAMA Psychiatry. 2017;74(5):465-75. .

  15. Hidaka BH. Depression as a disease of modernity: explanations for increasing prevalence. J Affect Disord. 2012;140(3):205-14. .

  16. Gallup.com [homepage on the Internet]. Gallup 2019 global emotions report. Washington: Gallup, Inc.; 2019 [cited 2019 Nov 5]. Available from: https://www.gallup. com/analytics/248906/gallup-global-emotions-report-2019.aspx. .

  17. McEwen BS, Seeman T. Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann NY Acad Sci. 1999;896:30-47. .

  18. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35(1):2-16. .

  19. Marshall GD. The adverse effects of psychological stress on immunoregulatory balance: applications to human inflammatory diseases. Immunol Allergy Clin North Am. 2011;31(1):133-40. .

  20. Bucsek MJ, Giridharan T, MacDonald CR, Hylander BL, Repasky EA. An overview of the role of sympathetic regulation of immune responses in infectious disease and autoimmunity. Int J Hypertherm. 2018;34(2):135-43. .

  21. Ambree O, Ruland C, Zwanzger P, Klotz L, Baune BT, Arolt V, Scheu S, Alferink J. Social defeat modulates T helper cell percentages in stress susceptible and resilient mice. Int J Mol Sci. 2019;20(14):E3512. .

  22. Barnum CJ, Pace TWW, Hu F, Neigh GN, Tansey MG. Psychological stress in adolescent and adult mice increases neuroinflammation and attenuates the response to LPS challenge. J Neuroinflammation. 2012;9:9. .

  23. Schroeder A, Notaras M, Du X, Hill RA. On the developmental timing of stress: delineating sex-specific effects of stress across development on adult behavior. Brain Sci. 2018;8(7):E121. .

  24. Nemeroff CB. Paradise lost: the neurobiological and clinical consequences of child abuse and neglect. Neuron. 2016;89(5):892-909. .

  25. Agrimi J, Spalletti C, Baroni C, Keceli G, Zhu G, Caragnano A, Matteucci M, Chelko S, Ramirez-Correa GA, Bedja D, Casieri V, Di Lascio N, Scalco A, Beltrami AP, Paolocci N, Caleo M, Lionetti V. Obese mice exposed to psychosocial stress display cardiac and hippocampal dysfunction associated with local brain-derived neuro-trophic factor depletion. EBioMed. 2019;47:384-401. .

  26. Bairey Merz CN, Dwyer J, Nordstrom CK, Walton KG, Salerno JW, Schneider RH. Psychosocial stress and cardiovascular disease: pathophysiological links. Behav Med (Washington, DC). 2002;27(4):141-7. .

  27. Johnson FK, Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: new insights and future challenges. Brain Behav Immun. 2018;69:18-27. .

  28. Stojanovich L, Marisavljevich D. Stress as a trigger of autoimmune disease. Autoimmun Rev. 2008;7(3):209-13. .

  29. Dube SR, Fairweather D, Pearson WS, Felitti VJ, Anda RF, Croft JB. Cumulative childhood stress and autoimmune diseases in adults. Psychosom Med. 2009;71(2):243-50. .

  30. Shoenfeld Y, Zandman-Goddard G, Stojanovich L, Cutolo M, Amital H, Levy Y, Abu-Shakra M, Barzilai O, Berkun Y, Blank M, de Carvalho JF, Doria A, Gilburd B, Katz U, Krause I, Langevitz P, Orbach H, Pordeus V, Ram M, Toubi E, Sherer Y. The mosaic of autoimmunity: hormonal and environmental factors involved in autoimmune diseases-2008. Isr Med Assoc J. 2008;10(1):8-12. .

  31. Crosta ML, De Simone C, Di Pietro S, Acanfora M, Caldarola G, Moccia L, Callea A, Panaccione I, Peris K, Rinaldi L, Janiri L, Di Nicola M. Childhood trauma and resilience in psoriatic patients: a preliminary report. J Psychosom Res. 2018;106:25-8. .

  32. Porcelli B, Pozza A, Bizzaro N, Fagiolini A, Costantini MC, Terzuoli L, Ferretti F. Association between stressful life events and autoimmune diseases: a systematic review and meta-analysis of retrospective case-control studies. Autoimmun Rev. 2016;15(4):325-34. .

  33. Jeppesen R, Benros ME. Autoimmune diseases and psychotic disorders. Front Psychiatry. 2019;10:131. .

  34. Song H, Fang F, Tomasson G, Arnberg FK, Mataix-Cols D, De La Cruz LF, Almqvist C, Fall K, Valdimarsdottir UA. Association of stress-related disorders with subsequent autoimmune disease. JAMA. 2018;319(23):2388-400. .

  35. Franke H. Toxic stress: effects, prevention and treatment. Children. 2014;1(3):390-402. .

  36. Rogosch FA, Dackis MN, Cicchetti D. Child maltreatment and allostatic load: consequences for physical and mental health in children from low-income families. Dev Psychopathol. 2011;23(4):1107-24. .

  37. cdc.gov [homepage on the Internet]. About the CDC-Kaiser ACE study. Atlanta, GA: Centers for Disease Control and Prevention [updated 2019 April 2; cited 2019 Oct 25]. Available from: https://www.cdc.gov/violenceprevention/ childabuseandneglect/acestudy/about.html. .

  38. Hughes K, Bellis MA, Hardcastle KA, Sethi D, Butchart A, Mikton C, Jones L, Dunne MP. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health. 2017;2(8): e356-66. .

  39. Tung J, Archie EA, Altmann J, Alberts SC. Cumulative early life adversity predicts longevity in wild baboons. Nat Commun. 2016;7:11181. .

  40. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, Koss MP, Marks JS. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998;14(4):245-58. .

  41. Danese A, Moffitt TE, Harrington H, Milne BJ, Polanczyk G, Pariante CM, Poulton R, Caspi A. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med. 2009;163(12):1135-43. .

  42. Danese A, Moffitt TE, Pariante CM, Ambler A, Poulton R, Caspi A. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry. 2008;65(4):409-15. .

  43. O'Rand AM, Hamil-Luker J. Processes of cumulative adversity: childhood disadvantage and increased risk of heart attack across the life course. J Gerontol B Sci Soc Sci. 2005;60 Spec No 2:S117-24. .

  44. Targum SD, Nemeroff CB. The effect of early life stress on adult psychiatric disorders. Innov Clin Neurosci. 2019;16(1-2):35-7. .

  45. Rohleder N. Acute and chronic stress induced changes in sensitivity of peripheral inflammatory pathways to the signals of multiple stress systems-2011 Curt Richter Award Winner. Psychoneuroendocrinology. 2012;37(3):307-16. .

  46. Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav. 2012;106(1):29-39. .

  47. Danese A, Pariante CM, Caspi A, Taylor A, Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci. 2007; 104(4): 1319-24. .

  48. Bailey MT, Kierstein S, Sharma S, Spaits M, Kinsey SG, Tliba O, Amrani Y, Sheridan JF, Panettieri RA, Haczku A. Social stress enhances allergen-induced airway inflammation in mice and inhibits corticosteroid responsiveness of cytokine production. J Immunol. 2009;182Q2):7888-96. .

  49. Mawdsley JE, Rampton DS. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut. 2005;54(10):1481-91. .

  50. Melgar S, Engstrom K, Jagervall A, Martinez V. Psychological stress reactivates dextran sulfate sodium-induced chronic colitis in mice. Stress. 2008;11(5):348-62. .

  51. Straub RH, Cutolo M. Involvement of the hypothalamic-pituitary-adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis: viewpoint based on a systemic pathogenetic role. Arthritis Rheum. 2001;44(3):493-507 .

  52. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999; 99(16):2192-217. .

  53. Kimura T, Yokoyama A, Kohno N, Nakamura H, Eboshida A. Perceived stress, severity of asthma, and quality of life in young adults with asthma. Allergol Int. 2009;58(1):71-9. .

  54. Turyk ME, Hernandez E, Wright RJ, Freels S, Slezak J, Contraras A, Piorkowski J, Persky VW. Stressful life events and asthma in adolescents. Pediatr Allergy Immunol. 2008;19(3):255-63. .

  55. Kiank C, Tache Y, Larauche M. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors. Brain Behav Immun. 2010;24(1):41-8. .

  56. Schalow G, Zach GA. Reorganization of the human central nervous system. Gen Physiol Biophys. 2000;19(Suppl 1):11-240. .

  57. Goldberg JL, Barres BA. The relationship between neuronal survival and regeneration. Annu Rev Neurosci. 2000;23:579-612. .

  58. Miller DB, O'Callaghan JP. Neuroendocrine aspects of the response to stress. Metabolism. 2002;51(6 Suppl 1):5-10. .

  59. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: Implications for health. Nat Rev Immunol. 2005;5(3):243-51. .

  60. Yang EV, Glaser R. Stress-induced immunomodulation and the implications for health. Int Immunopharmacol. 2002;2(2-3):315-24. .

  61. Dokur M, Boyadjieva N, Sarkar DK. Catecholaminergic control of NK cell cytolytic activity regulatory factors in the spleen. J Neuroimmunol. 2004;151(1-2):148-57. .

  62. Smith HR, Chused TM, Steinberg AD. Cyclophosphamide-induced changes in the MRL-lpr/lpr mouse: effects upon cellular composition, immune function, and disease. Clin Immunol Immunopathol. 1984;30(1):51-61. .

  63. Giarratana N, Penna G, Adorini L. Animal models of spontaneous autoimmune disease: type 1 diabetes in the nonobese diabetic mouse. Methods Mol Biol. 2007;380:285-311. .

  64. Bolon B, Stolina M, King C, Middleton S, Gasser J, Zack D, Feige U. Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol. 2011;2011:569068. .

  65. Boyton RJ, Altmann DM. Transgenic models of autoimmune disease. Clin Exp Immunol. 2002;127(1):4-11. .

  66. Farine JC. Animal models in autoimmune disease in immunotoxicity assessment. Toxicology. 1997;119(1):29-35. .

  67. Germolec D, Kono DH, Pfau JC, Pollard KM. Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS expert panel workshop. J Autoimmun. 2012;39(4):285-93 .

  68. Lee BH, Gauna AE, Pauley KM, Park Y-J, Cha S. Animal models in autoimmune diseases: lessons learned from mouse models for Sjogren's syndrome. Clin Rev Allergy Immunol. 2012;42(1):35-44. .

  69. Han Y, Mora J, Huard A, da Silva P, Wiechmann S, Putyrski M, Schuster C, Elwakeel E, Lang G, Scholz A, Scholz T, Schmid T, de Bruin N, Billuart P, Sala C, Burkhardt H, Parnham MJ, Ernst A, Brune B, Weigert A. IL-38 Ameliorates skin inflammation and limits IL-17 production from yS T cells. Cell Rep. 2019;27(3):835-46.e5. .

  70. Surcel M, Huica R-I, Munteanu A, Isvoranu G, PTrvu I, Ciotaru D, Constantin C, Bratu O, Caruntu C, Neagu M, Ursaciuc C. Phenotypic changes of lymphocyte populations in psoriasiform dermatitis animal model. Exp Ther Med. 2019;17(2):1030-8. .

  71. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079-106. .

  72. Perandini LA, de Sa-Pinto AL, Roschel H, Benatti FB, Lima FR, Bonfa E, Gualano B. Exercise as a therapeutic tool to counteract inflammation and clinical symptoms in autoimmune rheumatic diseases. Autoimmun Rev. 2012;12(2):218-24. .

  73. Kozora E, Ellison MC, Waxmonsky JA, Wamboldt FS, Patterson TL. Major life stress, coping styles, and social support in relation to psychological distress in patients with systemic lupus erythematosus. Lupus. 2005;14(5):363-72. .

  74. Harpaz I, Abutbul S, Nemirovsky A, Gal R, Cohen H, Monsonego A. Chronic exposure to stress predisposes to higher autoimmune susceptibility in C57BL/6 mice: glucocorticoids as a double-edged sword. Eur J Immunol. 2013;43(3):758-69. .

  75. Monteiro S, Roque S, de Sa-Calfada D, Sousa N, Correia-Neves M, Cerqueira JJ. An efficient chronic unpre-dictable stress protocol to induce stress-related responses in C57BL/6 mice. Front Psychiatry. 2015;6:6. .

  76. Johnson SB, Riley AW, Granger DA, Riis J. The science of early life toxic stress for pediatric practice and advocacy. Pediatrics. 2013;131(2):319-27. .

  77. Murthy S, Gould E. Early life stress in rodents: animal models of illness or resilience? Front Behav Neurosci. 2018;12:157. .

  78. Nishi M, Horii-Hayashi N, Sasagawa T. Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci. 2014;8:166. .

  79. George ED, Bordner KA, Elwafi HM, Simen AA. Maternal separation with early weaning: a novel mouse model of early life neglect. BMC Neurosci. 2010;11:123. .

  80. Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM. Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology (Berl). 2001;158(4):366-73 .

  81. Kalinichev M, Easterling KW, Plotsky PM, Holtzman SG. Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in Long-Evans rats. Pharmacol Biochem Behav. 2002;73(1):131-40. .

  82. Romeo RD, Mueller A, Sisti HM, Ogawa S, McEwen BS, Brake WG. Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Horm Behav. 2003;43(5):561-7. .

  83. Lee J-H, Kim HJ, Kim JG, Ryu V, Kim B-T, Kang D-W, Jahng JW. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res. 2007; 58(1):32-9. .

  84. Wei L, David A, Duman RS, Anisman H, Kaffman A. Early life stress increases anxiety-like behavior in Balbc mice despite a compensatory increase in levels of postnatal maternal care. Horm Behav. 2010;57(4):396-404. .

  85. White JD, KaffmanA. The moderating effects of sex on con-sequences of childhood maltreatment: from clinical studies to animal models. Front Neurosci. 2019;13:1082-111. .

  86. Rousset L, Halioua B. Stress and psoriasis. Int J Dermatol. 2018;57(10):1165-72. .

  87. Feldman SR. Patient education: psoriasis (beyond the basics) [monograph on the Internet]. The Netherlands: Wolters Kluwer; 2019 [cited 2019 Nov 7]. Available from: https://www.uptodate.com/contents/ psoriasis-beyond-the-basics. .

  88. Sarac G, Koca TT, Baglan T. A brief summary of clinical types of psoriasis. Northern Clin Istanb. 2016;3(1):79-82. .

  89. Pompili M, Innamorati M, Trovarelli S, Narcisi A, Bellini S, Orsini D, Forte A, Erbuto D, Botti E, Lamis DA, Girardi P, Costanzo A. Suicide risk and psychiatric comorbidity in patients with psoriasis. J Int Med Res. 2016;44(1 Suppl):61-6. .

  90. Gunter NV, Yap BJM, Chua CLL, Yap WH. Combining understanding of immunological mechanisms and genetic variants toward development of personalized medicine for psoriasis patients. Front Genet. 2019;10:395. .

  91. Lee K-Y, Leung K-S, Tang NLS, Wong M-H. Discovering genetic factors for psoriasis through exhaustively searching for significant second order SNP-SNP interactions. Sci Rep. 2018;8:15186. .

  92. Villarreal-Martinez A, Gallardo-Blanco H, Cerda-Flores R, Torres-Munoz I, Gomez-Flores M, Salas-Alanis J, Ocampo-Candiani J, Martinez-Garza L. Candidate gene polymorphisms and risk of psoriasis: a pilot study. Exp Ther Med. 2016;11(4):1217-22. .

  93. Woodrow JC, Ilchysyn A. HLA Antigens in psoriasis and psoriatic arthritis. J Med Genet. 1985;22(6):492-5. .

  94. Yunusbaeva M, Valiev R, Bilalov F, Sultanova Z, Sharipova L, Yunusbayev B. Psoriasis patients demonstrate HLA-Cw*06:02 allele dosage-dependent T cell proliferation when treated with hair follicle-derived keratin 17 protein. Sci Rep. 2018;8(1):6098 .

  95. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, Chamilos G, Feldmeyer L, Marinari B, Chon S, Vence L, Riccieri V, Guillaume P, Navarini AA, Romero P, Costanzo A, Piccolella E, Gilliet M, Frasca L. The antimi-crobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5(1):5621. .

  96. Chandra A, Lahiri A, Senapati S, Basu B, Ghosh S, Mukhopadhyay I, Behra A, Sarkar S, Chatterjee G, Chatterjee R. Increased risk of psoriasis due to combined effect of HLA-Cw6 and LCE3 risk alleles in Indian population. Sci Rep. 2016;6:24059. .

  97. Schon MP, Erpenbeck L. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis. Front Immunol. 2018;9:1323. .

  98. Walker JG, Littlejohn GO, McMurray NE, Cutolo M. Stress system response and rheumatoid arthritis: a multi-level approach. Rheumatology. 1999;38(11):1050-7. .

  99. Liu XJ, Ye HX, Li WP, Dai R, Chen D, Jin M. Relationship between psychosocial factors and onset of multiple sclerosis. Eur Neurol. 2009;62(3):130-6. .

  100. Brown RF, Tennant CC, Sharrock M, Hodgkinson S, Dunn SM, Pollard JD. Relationship between stress and relapse in multiple sclerosis: part II. Direct and indirect relationships. Mult Scler. 2006;12(4):465-75. .

  101. Maunder RG, Levenstein S. The role of stress in the development and clinical course of inflammatory bowel disease: epidemiological evidence. Curr Mol Med. 2008;8(4): 247-52. .

  102. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim BiophysActa. 2011;1813(5):878-88. .

  103. Xhaja A, Shkodrani E, Frangaj S, Kuneshka L, Vasili E. An epidemiological study on trigger factors and quality of life in psoriatic patients. Mater Sociomed. 2014;26(3): 168-71. .

  104. Carette S, Surtees PG, Wainwright NW, Khaw KT, Symmons DP, Silman AJ. The role of life events and childhood experiences in the development of rheumatoid arthritis. J Rheumatol. 2000;27(9):2123-30. .

  105. Littorin B, Sundkvist G, Nystrom L, Carlson A, Landin-Olsson M, Ostman J, Arnqvist HJ, Bjork E, Blohme G, Bolinder J, Eriksson JW, Schersten B, Wibell L. Family characteristics and life events before the onset of auto-immune type 1 diabetes in young adults: a nationwide study. Diabetes Care. 2001;24(6):1033-7. .

  106. Strieder TGA, Prummel MF, Tijssen JGP, Brosschot JF, Wiersinga WM. Stress is not associated with thyroid peroxidase autoantibodies in euthyroid women. Brain Behav Immun. 2005;19(3):203-6. .

  107. Cai Y, Fleming C, Yan J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol. 2012;9(4): 302-9. .

  108. Diani M, Altomare G, Reali E. T cell responses in psoriasis and psoriatic arthritis. Autoimmun Rev. 2015;14(4):286-92. .

  109. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339-50. .

  110. Boutet M-A, Nerviani A, Gallo Afflitto G, Pitzalis C. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: the clinical importance of its divergence in skin and joints. Int J Mol Sci. 2018;19(2):530. .

  111. Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp (Warsz). 2015;63(6):435-49. .

  112. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485-517. .

  113. Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007;19(6):652-7. .

  114. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP, Lubberts E. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182(9):5836-45. .

  115. Ueyama A, Yamamoto M, Tsujii K, Furue Y, Imura C, Shichijo M, Yasui K. Mechanism of pathogenesis of imiqui-modinduced skin inflammation in the mouse: a role for interferon-a in dendritic cell activation by imiquimod. J Dermatol. 2014;41(2):135-43. .

  116. Singh TP, Zhang HH, Hwang ST, Farber JM. IL-23- and Imiquimod-induced models of experimental psoriasis in mice. Curr Protoc Immunol. 2019;125(1):e71. .

  117. Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A. IL-23-Mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol. 2011; 186(3):1495-502. .

  118. Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol. 2018;201(6):1605. .

  119. Sakkas LI, Zafiriou E, Bogdanos DP. Mini review: new treatments in psoriatic arthritis. Focus on the IL-23/17 axis. Front Pharmacol. 2019;10:872. .

  120. Brogan IJ, Murray IA, Cerillo G, Needham M, White A, Davis JR. Interaction of glucocorticoid receptor isoforms with transcription factors AP-1 and NF-KB: lack of effect of glucocorticoid receptor p. Mol Cell Endocrinol. 1999;157(1-2):95-104. .

  121. Agro A, Stanisz AM. Are lymphocytes a target for substance P modulation in arthritis? Semin Arthritis Rheum. 1992;21(4):252-8. .

  122. Webster EL, Tracey DE, Jutila MA, Wolfe Jr SA, De Souza EB. Corticotropin-releasing factor receptors in mouse spleen: identification of receptor-bearing cells as resident macrophages. Endocrinology. 1990;127(1):440-52. .

  123. Plaut M. Lymphocyte hormone receptors. Annu Rev Immunol. 1987;5:621-69. .

  124. Jones HP. Immune cells listen to what stress is saying: neuroendocrine receptors orchestrate immune function. Methods Mol Biol. 2012;934:77-87. .

  125. McKay LI, Cidlowski JA. Molecular control of immune/ inflammatory responses: interactions between nuclear factor-KB and steroid receptor-signaling pathways. Endocr Rev. 1999;20(4):435-59. .

  126. van der Burg B, Liden J, Okret S, Delaunay F, Wissink S, van der Saag PT, Gustafsson JA. Nuclear factor-KB repression in antiinflammation and immunosuppression by glucocorticoids. Trends Endocrinol Metab. 1997;8(4):152-7. .

  127. Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71(1):9-15. .

  128. Pitzalis C, Pipitone N, Perretti M. Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann NY Acad Sci. 2002;966:108-18. .

  129. Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the P2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol. 1997;158(9):4200-10. .

  130. Tamada K, Harada M, Abe K, Li T, Nomoto K. IL-4-Producing NK1.1+ T cells are resistant to glucocorticoid-induced apoptosis: implications for the Th1/Th2 balance. J Immunol. 1998;161(3):1239-47. .

  131. Planey SL, Litwack G. Glucocorticoid-induced apoptosis in lymphocytes. Biochem Biophys Res Commun. 2000; 279(2):307-12. .

  132. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function. Annu Rev Immunol. 2000; 18:309-45. .

  133. Moser M, De Smedt T, Sornasse T, Tielemans F, Chentoufi AA, Muraille E, Van Mechelen M, Urbain J, Leo O. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol. 1995;25(10):2818-24. .

  134. Panina-Bordignon P, Mazzeo D, Lucia PD, D'Ambrosio D, Lang R, Fabbri L, Self C, Sinigaglia F. P2-Agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest. 1997;100(6):1513-9. .

  135. Steer JH, Ma DT, Dusci L, Garas G, Pedersen KE, Joyce DA. Altered leucocyte trafficking and suppressed tumour necrosis factor a release from peripheral blood monocytes after intra-articular glucocorticoid treatment. Ann Rheum Dis. 1998;57(12):732-7. .

  136. Liberman AC, Druker J, Perone MJ, Arzt E. Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev. 2007;18(1-2):45-56. .

  137. Bigas J, Sevilla LM, Carceller E, Boix J, Perez P. Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis. 2018;9(6):588 .

  138. Horinouchi CD, Mendes DA, Nolte S, Brito PS, Soley BD, Favero GM, Facundo VA, Santos AR, Cabrini DA, Otuki MF. Anti-proliferative and anti-inflammatory effects of 3p,6p,16P-trihydroxylup-20(29)-ene on cutaneous inflammation. J Ethnopharmacol. 2017;195:298-308. .

  139. Kubin ME, Kokkonen N, Palatsi R, Hagg PM, Vayrynen JP, Glumoff V, Haapasaari KM, Hurskainen T, Tasanen K. Clinical efficiency of topical calcipotriol/betamethasone treatment in psoriasis relies on suppression of the inflammatory TNFa-IL-23-IL-17 axis. Acta Derm Venereol. 2017;97(4):449-55. .

  140. Schuler R, Brand A, Klebow S, Wild J, Veras FP, Ullmann E, Roohani S, Kolbinger F, Kossmann S, Wohn C, Daiber A, Munzel T, Wenzel P, Waisman A, Clausen BE, Karbach S. Antagonization of IL-17A attenuates skin inflammation and vascular dysfunction in mouse models of psoriasis. J Invest Dermatol. 2019;139(3):638-47. .

  141. Hannen R, Udeh-Momoh C, Upton J, Wright M, Michael A, Gulati A, Rajpopat S, Clayton N, Halsall D, Burrin J, Flower R, Sevilla L, Latorre V, Frame J, Lightman S, Perez P, Philpott M. Dysfunctional skin-derived glucocorticoid synthesis is a pathogenic mechanism of psoriasis. J Invest Dermatol. 2017;137(8):1630-7. .

  142. Hall JL, Humbertson Jr AO. The autonomic nervous system. Prog Neurol Psychiatry. 1968;23:253-70. .

  143. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol. 1985;135(2 Suppl):755s-65s. .

  144. Ramer-Quinn DS, Baker RA, Sanders VM. Activated T helper 1 and T helper 2 cells differentially express the P-2-adrenergic receptor: a mechanism for selective modulation of T helper 1 cell cytokine production. J Immunol. 1997;159(10):4857-67. .

  145. Abrass CK, O'Connor SW, Scarpace PJ, Abrass IB. Characterization of the P-adrenergic receptor of the rat peritoneal macrophage. J Immunol. 1985;135(2):1338-41. .

  146. Garcia JJ, del Carmen Saez M, De la Fuente M, Ortega E. Regulation of phagocytic process of macrophages by noradrenaline and its end metabolite 4-hydroxy-3-metoxyphenyl-glycol. Role of a- and P-adrenoreceptors. Mol Cell Biochem. 2003;254(1-2):299-304. .

  147. Maestroni GJ, Mazzola P. Langerhans cells P2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J Neuroimmunol. 2003;144(1-2):91-9. .

  148. Maestroni GJ. Dendritic cell migration controlled by a1b-adrenergic receptors. J Immunol. 2000;165(12):6743-7. .

  149. Liu Y, Yuan Y, Li Y, Zhang J, Xiao G, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Interacting neuroendocrine and innate and acquired immune pathways regulate neutrophil mobilization from bone marrow following hemorrhagic shock. J Immunol. 2009;182(1):572-80. .

  150. Zankert S, Bellingrath S, Wust S, Kudielka BM. HPA Axis responses to psychological challenge linking stress and disease: what do we know on sources of intra- and interindividual variability? Psychoneuroendocrinology. 2019;105:86-97. .

Articles with similar content:

Factors Affecting Functional Recovery After Hip Fracture in the Elderly
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.16, 2004, issue 3
Marco Di Monaco
A Review of Sleep Disorder Diagnosis by Electromyogram Signal Analysis
Critical Reviews™ in Biomedical Engineering, Vol.43, 2015, issue 1
Mehrnaz Shokrollahi, Sridhar Krishnan
Autoimmune Etiology in Chronic Prostatitis Syndrome: An Advance in the Understanding of This Pathology
Critical Reviews™ in Immunology, Vol.27, 2007, issue 1
Virginia Elena Rivero, Ruben Dario Motrich, Clelia Maria Riera, Mariana Maccioni
Pathogenesis of Multiple Organ Failure in Sepsis
Critical Reviews™ in Immunology, Vol.35, 2015, issue 4
Alexander Zarbock, Jan Rossaint
Immune Dysfunction as a Factor in Heat Illness
Critical Reviews™ in Immunology, Vol.19, 1999, issue 4
Roy J. Shephard, P. N. Shek