Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Immunology
Impact-faktor: 1.352 5-jähriger Impact-Faktor: 3.347 SJR: 1.022 SNIP: 0.55 CiteScore™: 2.19

ISSN Druckformat: 1040-8401
ISSN Online: 2162-6472

Volumes:
Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v30.i1.10
pages 1-29

Toll-Like Receptors and B-Cell Receptors Synergize to Induce Immunoglobulin Class-Switch DNA Recombination: Relevance to Microbial Antibody Responses

Egest J. Pone
Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
Hong Zan
Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
Jing-Song Zhang
National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
Ahmed Al-Qahtani
Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
Zhenming Xu
Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
Paolo Casali
Department of Microbiology and Immunology, School of Medicine University of Texas Health Science Center, 7703 Floyd Curl Drive San Antonio, Texas 78229, USA

ABSTRAKT

Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA recombination in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B-cell differentiation and antibody responses. Te requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the up-regulation of co-stimulatory CD80 and MCH-II receptors, which result in more efficient interactions with T cells, thereby enhancing the germinal center reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products determine the ensuing B-cell antibody response.


Articles with similar content:

CD40 and Dendritic Cell Function
Critical Reviews™ in Immunology, Vol.23, 2003, issue 1-2
Ranjeny Thomas, Brendan O'Sullivan
Tolerance and Immunity in the Intestinal Immune System
Critical Reviews™ in Immunology, Vol.20, 2000, issue 2
Cathryn Nagler-Anderson
Integrin Function in T-Cell Homing to Lymphoid and Nonlymphoid Sites: Getting There and Staying There
Critical Reviews™ in Immunology, Vol.29, 2009, issue 2
Christopher C. DeNucci, Jason S. Mitchell, Yoji Shimizu
MHC Transfer from APC to T Cells Following Antigen Recognition
Critical Reviews™ in Immunology, Vol.26, 2006, issue 1
Scott A. Wetzel, David C. Parker
Targeting NKG2D and NKp30 Ligands Shedding to Improve NK Cell−Based Immunotherapy
Critical Reviews™ in Immunology, Vol.36, 2016, issue 6
Marco Cippitelli, Alessandra Soriani, Alessandra Zingoni, Elisabetta Vulpis, Angela Santoni, Cinzia Fionda, Ilaria Nardone