Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Immunology
Impact-faktor: 1.352 5-jähriger Impact-Faktor: 3.347 SJR: 1.022 SNIP: 0.55 CiteScore™: 2.19

ISSN Druckformat: 1040-8401
ISSN Online: 2162-6472

Volumes:
Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.2015012558
pages 49-57

Interleukin 35−Producing B Cells (i35-Breg): A New Mediator of Regulatory B-Cell Functions in CNS Autoimmune Diseases

Charles E. Egwuagu
Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland 20892
Cheng-Rong Yu
Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland 20892

ABSTRAKT

Neuroinflammation contributes to neuronal deficits in neurodegenerative CNS (central nervous system) autoimmune diseases, such as multiple sclerosis and uveitis. The major goal of most treatment modalities for CNS autoimmune diseases is to limit inflammatory responses in the CNS; immune-suppressive drugs are the therapy of choice. However, lifelong immunosuppression increases the occurrence of infections, nephrotoxicity, malignancies, cataractogenesis, and glaucoma, which can greatly impair quality of life for the patient. Biologics that target pathogenic T cells is an alternative approach that is gaining wide acceptance as indicated by the popularity of a variety of Food and Drug Administration (FDA)-approved anti-inflammatory compounds and humanized antibodies such as Zenapax, Etanercept, Remicade, anti-ICAM, rapamycin, or tacrolimus. B cells are also potential therapeutic targets because they provide costimulatory signals that activate pathogenic T cells and secrete cytokines that promote autoimmune pathology. B cells also produce autoreactive antibodies implicated in several organ-specific and systemic autoimmune diseases including lupus erythematosus, Graves' disease, and Hashimoto's thyroiditis. On the other hand, recent studies have led to the discovery of several regulatory B-cell (Breg) populations that suppress immune responses and autoimmune diseases. In this review, we present a brief overview of Breg phenotypes and in particular, the newly discovered IL35-producing regulatory B cell (i35-Breg). We discuss the critical roles played by i35-Bregs in regulating autoimmune diseases and the potential use of adoptive Breg therapy in CNS autoimmune diseases.


Articles with similar content:

The Goldilocks Conundrum: NLR Inflammasome Modulation of Gastrointestinal Inflammation during Inflammatory Bowel Disease
Critical Reviews™ in Immunology, Vol.36, 2016, issue 4
Veronica M. Ringel-Scaia, Irving C. Allen, Dylan K. McDaniel
Regulation Generation: The Suppressive Functions of Human Regulatory T Cells
Critical Reviews™ in Immunology, Vol.32, 2012, issue 1
Kevin D. Cooper, Thomas S. McCormick, Wendy A. Goodman
Role of CD38 Expression in Diagnosis and Pathogenesis of Chronic Lymphocytic Leukemia and Its Potential as Therapeutic Target
Critical Reviews™ in Immunology, Vol.35, 2015, issue 5
Simone Burgler
Checkpoint Modulators in Cancer Immunotherapy
Forum on Immunopathological Diseases and Therapeutics, Vol.5, 2014, issue 1-2
Jean Sathish
Genetically Engineered Natural Killer Cells as a Means for Adoptive Tumor Immunotherapy
Critical Reviews™ in Immunology, Vol.36, 2016, issue 4
Susanne Michen , Achim Temme